Ultrashort Optical Pulse Propagators - pks.mpg.delmipp05/TALK_ABSTRACTS/Moloney-Hando… ·...

Post on 16-Feb-2018

215 views 0 download

Transcript of Ultrashort Optical Pulse Propagators - pks.mpg.delmipp05/TALK_ABSTRACTS/Moloney-Hando… ·...

Ultrashort Optical Pulse Propagators

Jerome V MoloneyArizona Center for Mathematical Sciences

University of Arizona, Tucson

Lecture I. From Maxwell to Nonlinear Schrödinger

Lecture II. A Unidirectional Maxwell Propagator

Lecture III. Relation to other Propagators and Applications

An Artists Rendering- New Scientist, February 19, 2000

From Linear to Extreme NLO

Light string propagation inair.

Maxwell Equations I

Maxwell’s Equations

;

; 0

BE Dt

DH j Bt

ρ∂∇× = − ∇• =

∂∂

∇× = + ∇• =∂

Constitutive Relations

0 0;B H D E Pµ ε= = +

Polarization couples light to matter.( ),P r t

Maxwell Equations II

Vector Wave Equation

( )2 2

22 2 2 2

0

1 1E PE Ec t c tε

∂ ∂∇ − −∇ ∇• =

∂ ∂

Note: Most pulse propagation models derived from Maxwellassume that . Coupling between field componentscan only occur via nonlinear polarization i.e. nonlinear birefringence.

( ) 0E∇ ∇• =

( ) ( ) ( ), , ,L NLP r t P r t P r t= +

Maxwell Equations IIILinear and Nonlinear Polarization Models

( ) ( ) ( ) ( ) ( ) ( ) ( )10 0, , , , , ,LP r t r t E r d P r r E rε χ τ τ τ ω ε χ ω ω+∞

−∞

= − ⇔ =∫

( ) ( ) ( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( ) ( )( )

30 1 2 3 1 2 3 1 2 3

31 2 3 1 2 3

01 2 3 1 2 3

, , , , , , ,

, , , , , ,,

NL

NL

P r t r t t t E r E r E r d d d

r E r E r E rP r

d d d

ε χ τ τ τ τ τ τ τ τ τ

χ ω ω ω ω ω ωω ε

δ ω ω ω ω ω ω ω

= − − −

=+ + −

∫∫∫

∫∫∫

Practically, the linear polarization response is treated at some approximate level – nonlinear polarization is assumed to be instantaneous (Kerr) with a possible

delayed (Raman) term.

For ultra wide bandwidth pulses even linear dispersion is nontrivial to describe!

Maxwell Equations IIISome nonlinear polarization models:

Induced nonlinear refractive index

( ) ( ) ( )0 20

2 1NL bP E n n f I f R t I t dε χ τ τ∞

= ∆ = − + −

Rotational/vibrational Raman responseCoupling to Plasma

( )

( ) ( ) ( )

2

2

/

t

t ce

aI b I c

ej t E t j tm

ρ ρ

ρ τ

∂ = + −

= −

Formal Derivation of NLS I

( ) ( ) ( ) ( )2 2

122 2 2 2

2

2 20

1 1

1 NL

ELE E E t E dc t c t

Pc t

χ τ τ τ

ε

∂ ∂≡ ∇ −∇ ∇• − − −

∂ ∂∂

=∂

- asymptotic expansion in a small parameter µ

Seek solutions in the form of a perturbation expansion2 3 4

0 1 2 3E E E E Eµ µ µ µ= + + + +

where

( ) ( ) ( )( )0 , , , *i kz tE e B X x Y y Z z T t e ωµ µ µ µ −= = = = = +

is a wavepacket linearly polarized perpendicular to the direction of propagation z.

Formal Derivation of NLS II

( )( )( )( )

( )( )

2 2 2 2 21

2 2 2 2

2 2 2 2 21

2 2 2 2

2 2 2 2 21

2 2 2 2

1 1

1 1

1 1

y z c t x y x z

Lx y x z c t y z

x z y z x y c t

χ

χ

χ

∂ ∂ ∂ ∂ ∂+ − + • − − ∂ ∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂= − + − + • − ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

− − + − + • ∂ ∂ ∂ ∂ ∂ ∂ ∂

Assume slow variation of B

1 2

B B BZ Z Z

µ∂ ∂ ∂= + +

∂ ∂ ∂to remove secular terms proportional to z in , etc. 1 2,E E

Formal Derivation of NLS IIICan write ( ) ( ) ( )2 3

0 0 1 2 *i kz tLE e L Be L Be L Beω µ µ µ−= + + + +

( )( )

( )

2 2

2 20

2

0 00 00 0

k kL k k

k

ωω

ω

− + = − +

1

11

2 2 ' 0

0 2 2 ' 0

2 '

ik ikk ikZ T X

L ik ikkZ T

ik ik ikkX T T

∂ ∂ ∂ + − ∂ ∂ ∂ ∂ ∂ = + ∂ ∂

∂ ∂ ∂ − − ∂ ∂ ∂

( )

( )

( )

2

2 2 22

2 212

2 21

2

22 22

2 2 212

2 21

2 2

2 2 2 2

21 1 2

2

2

'' '

2

'' '

'' '

ikX Z

X Y X Zkk kk

Z T

ikX Z

LX Y Y Z

kk kkZ T

X YX Z Y Z

kk kkT

∂ ∂+ ∂ ∂ ∂ ∂ − −

∂ ∂ ∂ ∂∂ ∂+ − + ∂ ∂

∂ ∂ +∂ ∂∂ ∂ = − − ∂ ∂ ∂ ∂∂ ∂ + − +∂ ∂

∂ ∂ +

∂ ∂ ∂ ∂− − ∂ ∂ ∂ ∂ ∂ − + ∂

Formal Derivation of NLS IV

Solvability condition at order µ yields linear dispersion relation

( ) ( ):O k kµ ω=

Solvability condition at order µ2

( )2

1

: ' 0B BO kZ T

µ ∂ ∂+ =

∂ ∂

reflecting the fact that, to leading order, the wavepacket travelswith the group velocity.

Formal Derivation of NLS V

Solvability condition at order µ3 yields NLSE

( )2 2 2

3 222 2 2

2

'': | |2 2

nB i B B k BO i ik B BZ k X Y T n

µ ∂ ∂ ∂ ∂

= + − + ∂ ∂ ∂ ∂

Adding terms at O(µ2 ) and O(µ3)

2 2 222

2 2 2

''' | |2 2

nB B i B B k Bik i ik B BZ T k X Y T n

∂ ∂ ∂ ∂ ∂= − + + − + ∂ ∂ ∂ ∂ ∂

Higher order correction terms such as 3rd GVD, Raman and Envelope shock terms appear at next order!

Heuristic Derivation of NLSENLSE is most easily derived from the general dispersion relation:

( )2,| |kω ω= Ψ

Expand in a multi-variable Taylor series about ( ,0 0)k

( )( )

( )

( ) ( )( )

0 00 0

0 0

20 0 2

1 , ,0, ,0

2

0 0, ,0, 1

| || |

12

jj

j

d

j jj j kk

d

j j l lkj l j l

k kk

k k k k hotk k

ωω

ω

ω ωω ω

ω

=

=

∂ ∂= + − + Ψ ∂ ∂ Ψ

∂+ − − +

∂ ∂

Generic description of weakly nonlinear dispersive waves invert Fourier transform

D-Dimensional Nonlinear Schrödinger Equation

Canonical description of weakly nonlinear dispersive waves

∑=

∑=

=ΨΨ

Ψ∂

∂+

∂∂Ψ∂

∂∂∂

+∂Ψ∂

∂∂

+∂Ψ∂ D

lj ljlj

D

j jj xxkkxkti

1,2

2

22

10||

||ωωω

Group Velocity Group Velocity Dispersion Nonlinearity

D=1 - Integrable D=2,3 - Blowup singularity in finite time

MoloneyMoloney and Newell, Nonlinear Optics (2004): 1and Newell, Nonlinear Optics (2004): 1stst Edition (1992)Edition (1992)

Strong Turbulence Theory and Higher Dimensional NLS

Applications:

• Deep Water Waves

• Langmuir Turbulence in Plasmas

• Relativistic beam plasma turbulence

• Bose Einstein Condensates

Reference: Robinson, Reviews of Modern Physics, “Nonlinear wave collapse and strong turbulence”, Vol. 69, p507 (1997)

Types of Dispersion in NLO

Diffraction: Narrow waist beams of initial width spread over characteristic length scales 2

02 wLD λπ≈

0w

Dispersion: Short laser pulses of duration spread as they propagate over distances

where is the group velocitydispersion.

pτ||/ ''2 kL pDisp τ= ''k

Self-Phase ModulationSPM (Kerr) SPM (Delayed Nonlinearity)

SPM with Normal GVD

Dispersive shock(Wave breaking)

StokesAnti-Stokes

Plasma-Induced Spectral Blue ShiftRae and Burnett, PRA 46, p1084 (1992)

Optical field induced ionization can cause a rapid increase in electron density and, hence a decrease in refractive index

- end result is a strong blue shift in the generated spectrum

Spectral Blue Shift

2 30

2 308i

e

e N L dZm c dtλλ

π ε∆ = −

Ray Optics Estimation of Critical Power

Circular Aperture

Self-TrappedWaveguiden0+n2<E2>

0

0261.0anDλθ =

2a θc

n0

Incident PlaneWave

n0

0

202

nEn

c =θ Diffraction Angle:Critical Angle:

2

20

2

128)22.1(n

cPcλ

=Critical Power: (Air Pc = 3-4 GW )

Role of Dimension in NLS0||2 =+∇+ AAAiA s

Dz

s

••

•2 4

CBA

D

Critical collapseboundary (sD = 4)

Region of supercriticalcollapse (sD >4)

Summarys D NLO Manifestation

A: 1 0+1 cw spatial soliton1+0 temporal soliton

B: 2 0+2 cw beam critical focus1+1 simultaneous compression

in space and timeC: 3 1+2 3D collapse in bulk

Note: Supercritical collapse can occur in optics in anomalous GVD regime- when Laplacian operator is positive definite.0'' <k

8

D4

2

Normal GVD Arrests CollapseAAAkAaiA ttTz

2''2 ||+−∇=3D NLS:

• Anomalous GVD -- 3D Collapse (simultaneous space-time compression)

• Normal GVD -- 2D Collapse with pulse splitting in time

0'' <k

0'' >k

Review Articles:F. Fibich and G. Papanicolaou, SIAM J. Appl. Math. 60, pp183-240, (2000)L. Berge, Physics Reports, 303, pp259-372, (1998)

ODE Description near Collapse Manifold

Self-similar solution: where

τζα

ζχτζτii

egtA+−

=2

4)()(),,()()(1)( 0 tztzg −τ

)4()(

42

2

βαεββ

αβα

α

τ

τ

τ

−−−−=

−=

=

aav

gg Small parameter:)("

0" tzk=ε

Phase Portraits

Fixed point

Luther, Newell and Moloney, Physica D, Vol. 74, p59 (1994)

Modulational Instability I• A modulational instability across the wide beam front causes growth of

collapsing filaments – 2D analog of 1D MI in a fiber• When the instability growth spatial wavelength is much less than the

transverse dimension of the beam, one can analyze it as a perturbation on a plane wave

Starting Point is the NLSE

( )2 2| | 0z TiA A pN A Aγ+ ∇ + =

Where is the complex slowly-varying envelope of the electric field ( , )A x z

Key Idea: Linearize about an infinite plane wave solution

( ) *( ), ipN gg zA x z g e=

i.e N(|A|2) is an exact integral of NLSE for a plane wave

Modulational Instability II

( ) ( )( ) ( ), , ipN I zA x z g y x z e= +Assume

where is a small perturbation on the plane wave.( ),y x z

Substitute into NLSE

( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( )( )

20 0

* *

0

, , ( ) ,

, , , 0

z Tiy pN I g y x z y x z pN I g y x z

Np g y x z gy x z g y x zI

γ− + + ∇ + +

∂+ + + =

Canceling second and fourth terms and retaining terms first-order in y2 2 *

0

* 2 * * *20

' '

' 'z T

z T

iy y pI N y pg N y

iy y pI N y pg N y

γ

γ

+ ∇ + = −

− + ∇ + = −

Modulational Instability IIITo determine stability, seek perturbations with transverse spatial structurethat grow with z i.e

( ) ( ) ( )( ) ( ) ( )* ** * * * *

,

,

z iK x iK x z iK x iK x

z iK x iK x z iK x iK x

y x z e ae be e ce de

y x z e a e b e e c e d e

σ σ

σ σ

• − • − • − •

− • • − − • •

= + + +

= + + +

After straightforward algebra coupled system of linear pde’s reduce to the solution of a matrix problem:

For σ real:2 *2

0*2 2

0

' '0

' 'ai K pI N pg Nbpg N i K pI N

σ γσ γ

− + − = − − − +

For σ=iν, pure imaginary2 *2

0*2 2

0

' '0

' 'aK pI N pg Nbpg N K pI N

υ γυ γ

− − + − = − − +

Modulational Instability IIISummary:

1. Transverse perturbations will grow if Re(σ)>02. Instability growth determined by the condition

3. Critical wavenumber: fastest growing mode

2 2 2 402 ' 0pI N K Kσ γ γ= − >

Reσ

KKc

Periodic Box

Continous system

Kn

02 ' 2c

c

pI NK πγ λ

= =

Saturable Forced-Damped 2D NLS- a paradigm for optical turbulence

Movie first shown at Optical Bistability Meeting, Aussois, 1984

Made with 16 mm camera of Willis Lamb Jnr.

1. J.V. Moloney, Proc. Roy. Soc., A313, 429 (1984)2. J.V. Moloney, J.Q.E. IEEE, 21 , 1393 (1985).

Filamentation of Intense Laser Pulse in Air

NRL Laser Parameters

Pulse energy = 1.425 JPulse length = 400 fsecPeak power = 3.56 TWPropagation distance = 10 m

Arizo

na C

enter

for M

athem

atica

l Scie

nces

Optical Breakdown

•Avalanche Photo-Ionization- free impurity or seed electrons (produced by multi-photon ionization) are accelerated by light field and multiply exponentially.

•Multi-Photon Ionization- high intensity laser field ionizes electrons essentially instantaneously at a rate proportionalto the light intensity where N is the number of quanta needed to reach the ionizationcontinuum.

NN AI 2||≡

Mathematical Model

( ) ( )

∫∞−

− −+−

+−−+∂∂

−∇=∂∂

tR

NN

RT

AdtttAtRknifAA

AiAAknfitAkiA

ki

zA

'2''2

22)(

222

2''2

|)(|)(||2

12

||122

β

ρωτσ

GVD Plasma Absorption/refraction

Multi-photon absorption Delayed Raman Response

Diffraction Kerr Nonlinearity

22)(

22

||||1 ρω

βρσρ aN

AAEnt

NN

gb−+=

∂∂

Avalanche generation Multi-photon generation Plasma recombination

- Plasma Drude Model

Nonlinear Spatial Replenishment- multiple recurrence of collapse within pulse

M. Mlejnek, E.M. Wright and J.V. Moloney, Opt. Letts., 32, 382 (1998)

Single Filament - Radial symmetry

Experimental Verification

Detected radiation indicating recurrence of collapse.

A. Talebpour, S. Petit and S.L. Chin,“Re-focusing during propagation of afocused femtosecond pulse in air”, Opt. Commun., Vol. 171, pp 285-290,December (1999).

Optically Turbulent Atmospheric Light Guide

What happens when the femtosecond laser pulse is wide and contains tens to hundreds of critical powers?Woeste et al., Laser und Optoelektronik, Vol. 29, p51 1997.

A wide laser beam can undergo a modulational instability whereby an initially smooth beam profilebreaks up into multiple collapsing light filaments.[Campillo et al., Appl. Phys. Lett., Vol. 23, p628, 1973]

Strong Turbulence Scenario!

4D Strong Turbulence SimulationComputational Challenges:

•Severe compression of multiple interacting light filaments in space and time requires adaptive mesh refinement and parallel computation.

• Data Representation: - surface plot of filaments as slider

moves from front to back of pulsefixed propagation distance

- isosurface representation of filamentdistribution over pulse as a function of z.

Simulation- full (x,y,z,t) resolution- field intensity plots

Single Time Slice

M. Mlejnek, M. Kolesik, J.V. Moloney, and E.M. Wright, "Optically Turbulent Femtosecond Light Guide in Air." Phys. Review Letters, 83(15) pp. 2938-2941 (1999).

Adaptive Mesh Parallel SolverDynamic Dynamic regriding regriding in space and timein space and time

Turbulent Interaction and Nucleation of Light Filaments

Movie sweeps from front to back of laser pulse at a fixed propagation distance z=9.0 m.Filaments collapse on front end, decay and recur at random.Collapse singularity arrested by strong defocusing which conserves energy. Dissipation is very weak in air.

Z=9.0 m

Iso-surface

Optical Turbulence• Chaotic filament creation within propagating pulse

- 3D box contains main part of pulse

LeadingEdge

TrailingEdge

Summary of NLSE Model• Captures qualitative behavior of light string creation and

plasma generation

• Severe time (and space) compression within violently focusing pulse may invalidate NLSE description

• Simple Drüde plasma model with multiphoton ionization source captures lowest order plasma effects – improved modelplanned with Becker and Faisal.

• Beyond NLSE – resolve optical carrier while propagating over meter distances: UPPE model

Arizo

na C

enter

for M

athem

atica

l Scie

nces