The Role of Chemistry in Innovation Chemistry for Future Energy Supply K. Wagemann, DECHEMA e.V.

Post on 27-Mar-2015

220 views 1 download

Tags:

Transcript of The Role of Chemistry in Innovation Chemistry for Future Energy Supply K. Wagemann, DECHEMA e.V.

The Role of Chemistry in InnovationThe Role of Chemistry in Innovation

Chemistry for Future Energy SupplyChemistry for Future Energy Supply

K. Wagemann, DECHEMA e.V.

2

Two hot topics in the present political discussions:

Energy Supply

Climate Change

(Adaptation & Mitigation)

3

Energy in the SusChem Implementation Action Plan

• Energy– Alternative energy sources

• Photovoltaic• Fuels production from biomass• Fuel cells• (Metal)nanoparticles as fuel• Wind power

– Energy conservation• Efficient lighting• Insulation

– Energy storage• Batteries• Gas storage• Supercapacitors

4

Energy in the SusChem-Deutschland IAP

• Photovoltaics• Fuel cells• Efficient use of energy - inorganic LEDs• Efficient use of waste heat from industrial plants• Li-Ion batteries for stationary and mobile applications• Super caps• H2 production and storage• Exhaust gas treatment and catalysis• Light weight materials• Biobutanol

5

Chemistry and Energy

• German Coordination Group „Chemical aspects of energy research“:

• DECHEMA - Gesellschaft für Chemische Technik und Biotechnologie e.V.

• DBG – Deutsche Bunsen Gesellschaft für Physikalische Chemie e.V

• GDCh – Gesellschaft Deutscher Chemiker e.V.• DGMK – Deutsche Wissenschaftliche Gesellschaft

für Erdöl, Erdgas und Kohle e.V.• VDI-GVC – VDI-Gesellschaft Verfahrenstechnik

und Chemieingenieurwesen • VCI – Verband der Chemischen Industrie e.V.

6

Position Paper

7

Position PaperThesis

• The demand for chemical solutions will increase:– Fuel cells: Catalysts, Electrolytes, Membranes– Solar cells: Organic, Polymeric, Easy to Process Systems– Batteries: Electrodes, Electrolytes– Thermoelectrica: Nanostructured Materials

– CO2-Sequestration: Absorption, Chemical Conversion

– Heavy Oils and Coal (and Biomass): Conversion to Fuels

8

Energy Supply Fuels

Bioenergy

Photovoltaics

Fuel cells

Thermoelectrics

Collectors

H2-Production

Energy storage

Mobile batteries

Stationary batteries

Supercaps

Chemicals

Energy efficientproductionprocesses

Catalysis

Microreaction techn.

New reaction media

Process integration

OLEDs

Superconductors

Lightweight materials

Thermal insulationEfficient useof energy

The role of chemistry

CO2-Utilisation

Chemistry has a role for the future energy supply!

10

Backup

Backup

11

Chemistry-related CO2-Emissions

Numbers of 2004, Source: Ministry of Economics and Technology

Energy

Industry (total)Chemistry

= 861 Mio. t CO2

12

Production of Hydrogen

• Alternatives– Direct thermal water splitting (without catalyst: T > 2.500°C)

• catalytic

• redoxcatalytic

– Photocatalytic water splitting at solid surfaces– Biomimetic photosystems in liquid phase (Ru-Systems)– Biohydrogen

13

Photovoltaics

• Thin film solar cells (a-Si, µCSi, CdTe ...)

• Multibandgap-cells

Alternatives:

• Organic semiconductor systems

• Photoelectrochemical cells(Grätzel-Cells)

14

Materials for Collectors

• Coatings today:– Black Chromium

– Black Nickel

Efficient, but processing (galvanisation) not environmentally benign

• Coatings Future:– Al2N3

– Carbides

– TiNOx

Better efficiency (absorption and reflection)

but processing costs high

15

Thermoelectrical Devices• Principle

– Materials: Bi2Te3, Bi2Se3, Sb2Te (RT) / PbTe-, SiGe-Alloys (550 – 800 K)– Energy Source: In general lost heat– Applications:

• Energy independent micro sensors (“self-powered sensors”)• “self-powered micro-devices”• Auxiliary power systems in automotives• Cooling of Photovoltaic devices

16

Thermoelectrical Devices

Future: Higher Efficiency using nanostructured materials

17

CO2-Sequestration& Utilisation

Carbon Capture and Storage Technologies

18

CO2-Sequestration

• Research Topics (Chemistry related)– Coal Gasification

– CO2-Capture• Absorption• Membranes

– Materials / Corrosion(CO2(l) / H2O / High Salt Concentration)

19

CO2-Utilisation

• Energy Storage Systems• Dry Reforming

• CO2 as C1-Building Block

• Artificial Photosynthesis• Microalgae–Cultivation• “Better Plants”

20

CO2-Utilisation

• Energy Storage SystemsCO2 + H2 CH3OH + H2O

• NEDO-Project, Japan (since early 90ies)

Japan

Australia

CO2 MeOH

ZnCrO-catalyst

21

CO2-UtilisationSteamless Carbon Dioxide Reforming

(Dry Reforming)

• CO2 + CH4 2CO + 2H2

• Idea: Exploitation of remote gas fields (stranded gas)

• Discussion Platforms:– Eranet Chemistry– SusChem-D: September Workshop

22

CO2-UtilisationArtificial Photosynthesis

23

CO2-UtilisationArtificial Photosynthesis

• Light harvesting supramolecular components (Balzani, Bologna)

24

CO2-UtilisationArtificial Photosynthesis

• General Problems– Thermal – Stability– Photo(oxidative)-Stability– Light-Harvesting

• European Network: Solar-H (http://www.fotomol.uu.se/Forskning/Biomimetics/solarh)

25

CO2-UtilisationCO2 as C1 Building Block

• Problem: Inertness

O

COR1R2

C

OR2R1O

R3 R4

O

COR1R2O

CO2

Acetales

CarbonatesEster

26

CO2-UtilisationCO2 as C1 Building Block

Activation by Carboanhydrase:

CO2 + H2O HCO3- + H+

Aktive Center of Carboanhydrase

27

CO2-UtilisationActivation of CO2

• Active Species: CarbamateM. Antonietti, Angew. Chemie 2007, 119, 2773 ff

28

CO2-Utilisation Biorefineries

• Bioethanol/BioDiesel (1st Generation)• Biofuels 2nd Generation

– BTL ( FT-Catalysts)– Lignocellulose Ethanol

• Biogas• Chemical Building Blocks

29

CO2-Utilisation Biogas

One Alternative: Zinkoxid

H2S+ZnO H2O+ZnS

200-400 °C (!)

H2S-content: ppb