The Crank-Nicolson Method and Insulated Boundaries Douglas Wilhelm Harder, M.Math. LEL Department of...

Post on 29-Dec-2015

241 views 6 download

Tags:

Transcript of The Crank-Nicolson Method and Insulated Boundaries Douglas Wilhelm Harder, M.Math. LEL Department of...

The Crank-Nicolson Methodand

Insulated Boundaries

Douglas Wilhelm Harder, M.Math. LELDepartment of Electrical and Computer Engineering

University of Waterloo

Waterloo, Ontario, Canada

ece.uwaterloo.ca

dwharder@alumni.uwaterloo.ca

© 2012 by Douglas Wilhelm Harder. Some rights reserved.

2

Outline

This topic discusses numerical approximations to solutions to the heat-conduction/diffusion equation:– Consider the Crank-Nicolson method for approximating the heat-

conduction/diffusion equation– This is an implicit method

• Uses Matlab from Laboratories 1 and 2• Unconditionally stable

– Defines the characteristics of insulated boundaries– Implement insulated boundaries into the Crank-Nicolson method

The Crank-Nicolson Method

3

Outcomes Based Learning Objectives

By the end of this laboratory, you will:– Understand the Crank-Nicolson method– Understand the definition and approximations of insulated

boundaries

The Crank-Nicolson Method

4

Review

In Laboratory 1, you solved a boundary-value problem:– Given the finite-difference equation

d+uk − 1 + duk + d−uk + 1 = g(xk),

there are three unknowns:

uk – 1 uk uk + 1

– This requires us to set up a systemof n – 2 linear equations which must besolved

– The boundary values give us u1 and un

The Crank-Nicolson Method

5

Review

In Laboratory 2, we used an explicit method:– Given the finite-difference equation

– All the values on the right-hand sideare known, we need only evaluate thisfor u2, k + 1 through un − 1 , k + 1

, 1 , 1, , 1,22i k i k i k i k i k

tu u u u u

h

x

The Crank-Nicolson Method

6

Review

We found the finite-difference equation

by substituting

into 2

2

u u

t x

, 1 , 1, , 1,22i k i k i k i k i k

tu u u u u

h

, 1 ,

21, , 1,

2 2

,

2,

i k i ki k

i k i k i ki k

u uu x t

t tu u u

u x tx h

Both focus on (xi, tk)

The Crank-Nicolson Method

7

The Crank-Nicolson Method

What happens if we focus on the point (xi, tk + 1)?

, 1 ,1

21, 1 , 1 1, 1

12 2

,

2,

i k i ki k

i k i k i ki k

u uu x t

t hu u u

u x tx h

These focus on (xi, tk + 1)

The Crank-Nicolson Method

8

The Crank-Nicolson Method

This gives us the finite-difference equation

The linear equation now has:– One known ui, k

– Three unknowns ui – 1,k + 1, ui,k + 1, ui + 1, k + 1

The Crank-Nicolson Method

, 1 , 1, 1 , 1 1, 122i k i k i k i k i k

tu u u u u

h

9

The Crank-Nicolson Method

Compare the two:

, 1 , 1, , 1,22i k i k i k i k i k

tu u u u u

h

, 1 , 1, 1 , 1 1, 122i k i k i k i k i k

tu u u u u

h

The Crank-Nicolson Method

10

The Crank-Nicolson Method

Given two equations, we can add them:

, 1 , 1, , 1,2

, 1 , 1, 1 , 1 1, 12

2

2

i k i k i k i k i k

i k i k i k i k i k

tu u u u u

ht

u u u u uh

, 1 , 1, , 1,2

1, 1 , 1 1, 12

2 2 2

2

i k i k i k i k i k

i k i k i k

tu u u u u

ht

u u uh

+

The Crank-Nicolson Method

11

The Crank-Nicolson Method

First, substitute

, 1 , 1, , 1,

1, 1 , 1 1, 1

2 2 2

2

i k i k i k i k i k

i k i k i k

u u r u u u

r u u u

2

tr

h

The Crank-Nicolson Method

12

The Crank-Nicolson Method

Next, collect similar terms and bring– All unknowns to the left, and– All knowns to the right

1, 1 , 1 1, 1

, 1, , 1,

2 1

2 2

i k i k i k

i k i k i k i k

ru r u ru

u r u u u

The Crank-Nicolson Method

13

The Crank-Nicolson Method

We now have a new finite-difference equation:

1, 1 , 1 1, 1 , 1, , 1,2 1 2 2i k i k i k i k i k i k i kru r u ru u r u u u

Unknowns Knowns

The Crank-Nicolson Method

14

The Crank-Nicolson Method

As we did in Laboratory 1, we could then write nx – 2 equations

1, 1 2, 1 3, 1 2, 1, 2, 3,2 1 2 2k k k k k k kru r u ru u r u u u

2, 1 3, 1 4, 1 3, 2, 3, 4,2 1 2 2k k k k k k kru r u ru u r u u u

3, 1 4, 1 5, 1 4, 3, 4, 5,2 1 2 2k k k k k k kru r u ru u r u u u

2, 1 1, 1 , 1 1, 2, 1, ,2 1 2 2x x x x x x xn k n k n k n k n k n k n kru r u ru u r u u u

3, 1 2, 1 1, 1 2, 3, 2, 1,2 1 2 2x x x x x x xn k n k n k n k n k n k n kru r u ru u r u u u

....nx – 2

Unknowns Knowns

The Crank-Nicolson Method

15

The Crank-Nicolson Method

Again, there appear to be nx unknowns; however, the boundary conditions provide two of those values:

1, 1 2, 1 3, 1 2, 1, 2, 3,2 1 2 2k k k k k k kru r u ru u r u u u

2, 1 3, 1 4, 1 3, 2, 3, 4,2 1 2 2k k k k k k kru r u ru u r u u u

3, 1 4, 1 5, 1 4, 3, 4, 5,2 1 2 2k k k k k k kru r u ru u r u u u

2, 1 1, 1 , 1 1, 2, 1, ,2 1 2 2x x x x x x xn k n k n k n k n k n k n kru r u ru u r u u u

3, 1 2, 1 1, 1 2, 3, 2, 1,2 1 2 2x x x x x x xn k n k n k n k n k n k n kru r u ru u r u u u

....

Unknowns Knowns

The Crank-Nicolson Method

16

The Crank-Nicolson Method

That is: u1, k + 1 = abndry(tk + 1)

un , k + 1 = bbndry(tk + 1)x

1, 1 2, 1 3, 1 2, 1, 2, 3,2 1 2 2k k k k k k kru r u ru u r u u u

2, 1 3, 1 4, 1 3, 2, 3, 4,2 1 2 2k k k k k k kru r u ru u r u u u

3, 1 4, 1 5, 1 4, 3, 4, 5,2 1 2 2k k k k k k kru r u ru u r u u u

2, 1 1, 1 , 1 1, 2, 1, ,2 1 2 2x x x x x x xn k n k n k n k n k n k n kru r u ru u r u u u

3, 1 2, 1 1, 1 2, 3, 2, 1,2 1 2 2x x x x x x xn k n k n k n k n k n k n kru r u ru u r u u u

....

Unknowns Knowns

Bring them to the right-hand side....

The Crank-Nicolson Method

17

The Crank-Nicolson Method

We now have nx – 2 linear equations and nx – 2 unknowns

2, 1 3, 1 2, 1, 2, 3, bndry 12 1 2 2k k k k k k kr u ru u r u u u ra t

2, 1 1, 1 1, 2, 1, , bndry 12 1 2 2x x x x x xn k n k n k n k n k n k kru r u u r u u u rb t

2, 1 3, 1 4, 1 3, 2, 3, 4,2 1 2 2k k k k k k kru r u ru u r u u u

3, 1 4, 1 5, 1 4, 3, 4, 5,2 1 2 2k k k k k k kru r u ru u r u u u

3, 1 2, 1 1, 1 2, 3, 2, 1,2 1 2 2x x x x x x xn k n k n k n k n k n k n kru r u ru u r u u u

....

Unknowns Knowns

The Crank-Nicolson Method

18

The Crank-Nicolson Method

This can be written in the form Mx = b:

2, 1

3, 1

4, 1

2, 1

1, 1

2 1

2 1

2 1

2 1

2 1

x

x

k

k

k

n k

n k

r r ur r r u

r r u

ru

r r ru

r r

2, 1, 2, 3, bndry 1

3, 2, 3, 4,

4, 3, 4, 5,

2, 3, 2, 1,

1, 2, 1, , bndry 1

2 2

2 2

2 2

2 2

2 2

x x x x

x x x x

k k k k k

k k k k

k k k k

n k n k n k n k

n k n k n k n k k

u r u u u ra t

u r u u u

u r u u u

u r u u u

u r u u u rb t

Unknow

ns

Knowns

The Crank-Nicolson Method

The Crank-Nicolson Method

Note the structure of b:

2, 1, 2, 3, bndry 1

3, 2, 3, 4,

4, 3, 4, 5,

2, 3, 2, 1,

1, 2, 1, , bndry 1

2 2

2 2

2 2

2 2

2 2

x x x x

x x x x

k k k k

k k k k

k k k k

n k n k n k n k

n k n k n k n k

u r u u u ra t

u r u u u

u r u u u

u r u u u

u r u u u rb t

2, 1, 2, 3, bndry 1

3, 2, 3, 4,

4, 3, 4, 5,

2, 3, 2, 1,

bndry 11, 2, 1, ,

2

2

22

2

2x x x x

x x x x

k k k k k

k k k k

k k k k

n k n k n k n k

kn k n k n k n k

u u u u ra tu u u u

u u u ur

u u u u

rb tu u u u

diff

19

The Crank-Nicolson Method

20

Approximating the Solution

Thus, given the initial state at time t1, we create a system of equations with k = 1 to solve for u2, 2 through un – 1, 2x

The Crank-Nicolson Method

21

Approximating the Solution

We will simultaneously solve for these values and assign them to our solution matrix U

The Crank-Nicolson Method

22

Approximating the Solution

Given the initial state at time t2, we will create the system of equations with k = 2 to solve for u2, 3 through un – 1, 3x

The Crank-Nicolson Method

23

Approximating the Solution

Again, having solved for the values u2, 3 through un – 1, 3, we assign those entries to our matrix U

x

The Crank-Nicolson Method

24

Approximating the Solution

In general, at time tk, we will create the system of equations with k and then solve for u2, k + 1 through un – 1, k + 1x

The Crank-Nicolson Method

25

Approximating the Solution

Doing this, we will fill in the balance of the matrix

The Crank-Nicolson Method

26

The diffusion1d Function

The signature will be function [x_out, t_out, U_out] = ... crank_nicolson1d( kappa, x_rng, nx, t_rng, nt, u_init,

u_bndry )

wherekappa the diffusivity coefficient

x_rng the space range [a, b]

nx the number of points into which we will divide [a, b]

t_rng the time interval [t0, tfinal]

nt the number of points into which we will divide [t0, tfinal]

u_init a function handle giving the initial state uinit:[a, b] → R

u_bndry a function handle giving the two boundary conditions

ubndry:[t0, tfinal] → R2 where

bndrybndry

bndry

a tu t

b t

The Crank-Nicolson Method

27

Step 1: Error Checking

Unlike the previous method we used which was subject to a catastrophic error if

the Crank-Nicolson method is unconditionally stable– There are no values which will cause the divergence we saw

using the previous technique

Never-the-less, if , there may be decaying osillations

20.5

t

h

20.5

t

h

The Crank-Nicolson Method

28

Step 1: Error Checking

Rather than throwing an exception, issue a warning:

warning( 'MATLAB:questionable_argument', ... 'the arguments of %d and %d are sub-

optimal', ... a, b )

This warning will be seen by the user; however,it will not terminate the execution of the function

The Crank-Nicolson Method

29

Step 2: Initialization

It would still be useful to initialize the matrix U and then use the values as appropriate

init 1 bndry 2 bndry 3 bndry 4 bndry 5 bndry 6 bndry 7 bndry 8 bndry 9 bndry 10 bndry 11 bndry 12

init 2

init 3

init 4

init 5

init 6

init 7

? ? ? ? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ? ? ? ?

? ? ? ? ?

u x a t a t a t a t a t a t a t a t a t a t a t

u x

u x

u x

u x

u x

u x

init 8

init 9 bndry 2 bndry 3 bndry 4 bndry 5 bndry 6 bndry 7 bndry 8 bndry 9 bndry 10 bndry 11 bndry 12

? ? ? ? ? ?

? ? ? ? ? ? ? ? ? ? ?u x

u x b t b t b t b t b t b t b t b t b t b t b t

nx

nt

The Crank-Nicolson Method

30

Step 3: Solving

As with the previous case, we will find solutions for the interior points for t2 through t

init 1 bndry 2 bndry 3 bndry 4 bndry 5 bndry 6 bndry 7 bndry 8 bndry 9 bndry 10 bndry 11 bndry 12

init 2

init 3

init 4

init 5

init 6

init 7

? ? ? ? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ? ? ? ?

? ? ? ? ?

u x a t a t a t a t a t a t a t a t a t a t a t

u x

u x

u x

u x

u x

u x

init 8

init 9 bndry 2 bndry 3 bndry 4 bndry 5 bndry 6 bndry 7 bndry 8 bndry 9 bndry 10 bndry 11 bndry 12

? ? ? ? ? ?

? ? ? ? ? ? ? ? ? ? ?u x

u x b t b t b t b t b t b t b t b t b t b t b t

nx

nt

t

The Crank-Nicolson Method

nt

31

Step 3: Solving

For each time step from 1 to nt – 1, we will, however, have to perform the following:

3a. Set up the system of linear equations

3b. Solve the system of linear equations, and

3c. Assign the values to the next column of the solution matrix

The Crank-Nicolson Method

32

Useful Matlab Commands

There are no new additional Matlab commands for the Crank-Nicolson method that you have not already been introduced to in Laboratories 1 and 2

The Crank-Nicolson Method

33

Examples

Consider the following example:– The initial temperature of the bar is 1 oC– The bar is placed in contact with two barriers at –1 oC and 2 oC

function [u] = u3a_init( x ) u = x*0 + 1;end

function [u] = u3a_bndry( t ) u = [t*0 - 1; t*0 + 2];end

The Crank-Nicolson Method

34

Examples

[xs, ts, Us] = crank_nicolson1d( 1.5, [0 1], 6, [0 1], 21, @u3a_init, @u3a_bndry );

mesh( ts, xs, Us )

21.875

t

h

The Crank-Nicolson Method

35

Examples

[xs, ts, Us] = crank_nicolson1d( 1.5, [0 1], 41, [0 1], 11, @u3a_init, @u3a_bndry );

mesh( ts, xs, Us )

2240

t

h

Note the transient oscillations

The Crank-Nicolson Method

36

Examples

[xs, ts, Us] = crank_nicolson1d( 1.5, [0 1], 41, [0 1], 41, @u3a_init, @u3a_bndry );

mesh( ts, xs, Us )

Note the transient oscillations

260

t

h

The Crank-Nicolson Method

37

Examples

[xs, ts, Us] = crank_nicolson1d( 1.5, [0 1], 21, [0 1], 301, @u3a_init, @u3a_bndry );

mesh( ts, xs, Us )

22

t

h

The Crank-Nicolson Method

38

Examples

Consider an alternate example:– The initial temperature of the bar is 0 oC– The bar is placed in contact with two barriers at 1 oC and 4 oC

function [u] = u3b_init( x ) u = x*0;end

function [u] = u3b_bndry( t ) u = [t*0 + 1; t*0 + 4];end

The Crank-Nicolson Method

39

Examples

[x3b, t3b, U3b] = crank_nicolson1d( 0.25, [0 1], 11, [0 1], 11, @u3b_init, @u3b_bndry );

mesh( t3b, x3b, U3b );frames3b = animate( U3b );frames2gif( frames3b, 'plot3b.i.gif' ); 2

2.5t

h

The Crank-Nicolson Method

40

Examples

[x3b, t3b, U3b] = crank_nicolson1d( 0.25, [0 1], 41, [0 1], 161, @u3b_init, @u3b_bndry );

mesh( t3b, x3b, U3b );frames3b = animate( U3b );frames2gif( frames3b, 'plot3b.ii.gif' ); 2

2.5t

h

The Crank-Nicolson Method

41

Insulated Boundaries

We have looked at situations where we have known temperatures or concentrations at each end of the bar; however, what happens if one end of the bar is insulated?

The Crank-Nicolson Method

42

Terminology

Up to this point, we have discussed boundary values where the value of the function is specified– These are termed Dirichlet boundary condition

Alternatively, one can specify the value of the derivative at the boundary points– These are termed Neumann boundary conditions

Specifically, we will focus on insulated boundary conditions where the derivative at the boundaries are zero

The Crank-Nicolson Method

43

Insulated Boundaries

Suppose you have a metal bar in contact with a body at 100 oC– If the bar is insulated, over time, the entire length of the bar will

be at 100 oC

100 oC0 oC

The Crank-Nicolson Method

44

Insulated Boundaries

At time t = 0, one end of the bar is brought in contact with a heat sink at 0 oC; the other end is insulated

100 oC0 oC

The Crank-Nicolson Method

45

Insulated Boundaries

Over time, the bar continues to cool

100 oC0 oC

The Crank-Nicolson Method

46

Insulated Boundaries

The cooling process will be much slower

100 oC0 oC

The Crank-Nicolson Method

47

Insulated Boundaries

Even the furthest end, however, will begin to cool after some time

42 oC0 oC

The Crank-Nicolson Method

48

Insulated Boundaries

Until, ultimately, the entire bar is at 0 oC

0 oC0 oC

The Crank-Nicolson Method

49

Insulated Boundaries

The mathematical property of an insulated boundary is that there is no transfer w.r.t. space of the property (temperature or concentration) across that boundary:

or 1, 0ku a t

x

1, 0ku b tx

The Crank-Nicolson Method

50

Insulated Boundaries

We could use the O(h) approximations:

However, as other approximations of the 2nd derivative are O(h2), we will use:

, ,,

u a h t u a tu a t

x h

The Crank-Nicolson Method

, ,,

u b t u b h tu b t

x h

3 , 4 , 2 ,,

22 , 4 , 3 ,

,2

u a t u a h t u a h tu a t

x hu b h t u b h t u b t

u b tx h

51

Insulated Boundaries

Thus, our approximations of the insulated boundary conditions

are

1 1 12 , 4 , 3 ,0

2k k ku a h t u a h t u a t

h

1 1 13 , 4 , 2 ,0

2k k ku b t u b h t u b h t

h

The Crank-Nicolson Method

1, 0ku a tx

1, 0ku b tx

52

Insulated Boundaries

First multiply by 2h:

Next, substitute

Finally, solve for u1,k + 1 and un ,k + 1 :

1 1 12 , 4 , 3 , 0k k ku a h t u a h t u a t

1 1 13 , 4 , 2 , 0k k ku b t u b h t u b h t

3, 1 2, 1 1, 14 3 0k k ku u u

, 1 1, 1 2, 13 4 0x x xn k n k n ku u u

1, 1 2, 1 3, 1

4 1

3 3k k ku u u , 1 1, 1 2, 1

4 1

3 3x x xn k n k n ku u u

x

The Crank-Nicolson Method

53

Insulated Boundaries

The first and last linear equations we prepared use both u1, k + 1 and un , k + 1, respectively

1, 1 2, 1 3, 1 2, 1, 2, 3,2 1 2 2k k k k k k kru r u ru u r u u u

2, 1 1, 1 , 1 1, 2, 1, ,2 1 2 2x x x x x x xn n k n k n k n k n k n kru r u ru u r u u u

x

The Crank-Nicolson Method

54

Insulated Boundaries

Applying our substitutions:

2, 1 3, 1 2, 1 3, 1 2, 1, 2, 3,

4 12 1 2 2

3 3k k k k k k k kr u u r u ru u r u u u

2, 1 1, 1 1, 1 2, 1 1, 2, 1, ,

4 12 1 2 2

3 3x x x x x x x xn n k n k n k n k n k n k n kru r u r u u u r u u u

1, 1 2, 1 3, 1

4 1

3 3k k ku u u

, 1 1, 1 2, 1

4 1

3 3x x xn k n k n ku u u

The Crank-Nicolson Method

55

Insulated Boundaries

Thus, the first and last equations simplify to:

2, 1 3, 1 2, 1, 2, 3,

2 22 2 2

3 3k k k k k kr u ru u r u u u

2, 1 1, 1 1, 2, 1, ,

2 22 2 2

3 3x x x x x xn n k n k n k n k n kru r u u r u u u

The Crank-Nicolson Method

56

Insulated Boundaries

Recall our original system Mx = b

2, 1, 2, 3, bndry 1

3, 2, 3, 4,

4, 3, 4, 5,

intr

2, 3, 2, 1,

1,

2 22 1

2 1 2 2

2 22 1

2 22 1

2 1 2

x x x x

x x

k k k k k

k k k k

k k k k

n k n k n k n k

n k n

u r u u u ra tr r

r r r u r u u u

u r u u ur r

ru r u u ur r r

r r u r u

u

2, 1, , bndry 12x xk n k n k ku u rb t

The Crank-Nicolson Method

57

2, 1, 2, 3, bndry 1

3, 2, 3, 4,

4, 3, 4, 5,

intr

2, 3, 2, 1,

1,

2 22 1

2 1 2 2

2 22 1

2 22 1

2 1 2

x x x x

x x

k k k k k

k k k k

k k k k

n k n k n k n k

n k n

u r u u u ra tr r

r r r u r u u u

u r u u ur r

ru r u u ur r r

r r u r u

u

2, 1, , bndry 12x xk n k n k ku u rb t

Insulated Boundaries

Two changes are required if the left boundary is insulated:– m1,1 and m1,2 are modified

– The original change to b1 is no longer necessary2

23

r2

3r

The Crank-Nicolson Method

58

2, 1, 2, 3, bndry 1

3, 2, 3, 4,

4, 3, 4, 5,

intr

2, 3, 2, 1,

1,

2 22 1

2 1 2 2

2 22 1

2 22 1

2 1 2

x x x x

x x

k k k k k

k k k k

k k k k

n k n k n k n k

n k n

u r u u u ra tr r

r r r u r u u u

u r u u ur r

ru r u u ur r r

r r u r u

u

2, 1, , bndry 12x xk n k n k ku u rb t

Insulated Boundaries

Two changes are required if the right boundary is insulated:– mn – 2, n – 2 and mn – 2, n – 3 are modified

– The original change to bn – 2 is no longer necessaryx

x x

22

3r

2

3r

x x

The Crank-Nicolson Method

59

Insulated Boundaries

How do we indicate an insulated boundary?– One of the best ideas I have found is to have the boundary

function return NaN– Recall that NaN is the result of floating-point operations such as

0/0: >> 0/0ans = NaN

– It is also appropriate: an insulated boundary has an undefined temperature

The Crank-Nicolson Method

60

Insulated Boundaries

For example, the following would implement an insulated boundary at the left-hand end point:

function u = u3c_bndry(t) u = [0*t + NaN; 0*t + 2];end

The Crank-Nicolson Method

61

Insulated Boundaries

Problem: IEEE 754 standard requires that NaN ≠ NaN:>> NaN == NaNans = 0

>> NaN ~= NaNans = 1

Solution: use the isnan command:>> isnan( NaN )ans = 1

The Crank-Nicolson Method

62

Insulated Boundaries

Suppose that our system begins as follows:>> [x3c, t3c, U3c] = crank_nicolson1d( 1.5, [0 2], 6, [0 1], 9, @u3c_init,

@u3c_bndry );

1 NaN NaN NaN NaN NaN NaN NaN NaN 1 0 0 0 0 0 0 0 01 0 0 0 0 0 0 0 01 0 0 0 0 0 0 0 01 0 0 0 0 0 0 0 01 2 2 2 2 2 2 2 2

21.1719

t

h

The Crank-Nicolson Method

63

Insulated Boundaries

Suppose that our system begins as follows:>> [x3c, t3c, U3c] = crank_nicolson1d( 1.5, [0 2], 6, [0 1], 9, @u3c_init,

@u3c_bndry );

The first system of equations yields the solution1.00701.02501.08581.2929

1 NaN NaN NaN NaN NaN NaN NaN NaN 1 0 0 0 0 0 0 0 01 0 0 0 0 0 0 0 01 0 0 0 0 0 0 0 01 0 0 0 0 0 0 0 01 2 2 2 2 2 2 2 2

The Crank-Nicolson Method

64

Insulated Boundaries

These values are assigned to the 2nd column:

The first system of equations yields the solution1.00701.02501.08581.2929

1 NaN NaN NaN NaN NaN NaN NaN NaN 1 1.0070 0 0 0 0 0 0 01 1.0250 0 0 0 0 0 0 01 1.0858 0 0 0 0 0 0 01 1.2929 0 0 0 0 0 0 01 2 2 2 2 2 2 2 2

The Crank-Nicolson Method

65

Insulated Boundaries

Now we reuse the formula:

The first system of equations yields the solution1.00701.02501.08581.2929

1 1.0010 NaN NaN NaN NaN NaN NaN NaN 1 1.0070 0 0 0 0 0 0 01 1.0250 0 0 0 0 0 0 01 1.0858 0 0 0 0 0 0 01 1.2929 0 0 0 0 0 0 01 2 2 2 2 2 2 2 2

1,2 2,2 3,2

4 1

3 3u u u

The Crank-Nicolson Method

66

Insulated Boundaries

Repeating the process...

The second system of equations yields the solution1.04041.10771.27351.6133

1 1.0010 NaN NaN NaN NaN NaN NaN NaN 1 1.0070 0 0 0 0 0 0 01 1.0250 0 0 0 0 0 0 01 1.0858 0 0 0 0 0 0 01 1.2929 0 0 0 0 0 0 01 2 2 2 2 2 2 2 2

The Crank-Nicolson Method

67

Insulated Boundaries

Copy the values:

The second system of equations yields the solution1.04041.10771.27351.6133

1 1.0010 NaN NaN NaN NaN NaN NaN NaN 1 1.0070 1.0404 0 0 0 0 0 01 1.0250 1.1077 0 0 0 0 0 01 1.0858 1.2735 0 0 0 0 0 01 1.2929 1.6133 0 0 0 0 0 01 2 2 2 2 2 2 2 2

The Crank-Nicolson Method

68

Insulated Boundaries

And use the formula:

The second system of equations yields the solution1.04041.10771.27351.6133

1 1.0010 1.0179 NaN NaN NaN NaN NaN NaN 1 1.0070 1.0404 0 0 0 0 0 01 1.0250 1.1077 0 0 0 0 0 01 1.0858 1.2735 0 0 0 0 0 01 1.2929 1.6133 0 0 0 0 0 01 2 2 2 2 2 2 2 2

1,2 2,2 3,2

4 1

3 3u u u

The Crank-Nicolson Method

69

Insulated Boundaries

If the insulated boundary condition is at the other end,we would use the formula:

to calculate the missing entry

, 1 1, 1 2, 1

4 1

3 3x x xn k n k n ku u u

The Crank-Nicolson Method

70

Step 3: Solving

We only need two small changes:– First, in the argument checking, nx ≥ 4

– Second, for each time step from 1 to nt – 1, we will, however, have to perform the following:

3a. Set up the system of linear equations and modify:– The vector if it is a Dirichlet boundary condition– The matrix if it is an insulated boundaries

3b. Solve the system, and

3c. Copy the values back to U in the next column– If the boundaries are insulated in that column, use the

appropriate formula to find the end points

The Crank-Nicolson Method

71

Examples

Ultimately, we get the image: [x3c, t3c, U3c] = crank_nicolson1d( 1.5, [0 2], 6, [0 1], 9, @u3c_init,

@u3c_bndry ); mesh( t3c, x3c, U3c )

The Crank-Nicolson Method

72

Examples

If we increase the resolution: [x3d, t3d, U3d] = crank_nicolson1d( 1.5, [0 2], 20, [0 1], 100, @u3c_init,

@u3c_bndry ); mesh( t3d, x3d, U3d )

The Crank-Nicolson Method

73

Examples

After three seconds, the temperature near the insulated boundary has increased significantly

[x3e, t3e, U3e] = crank_nicolson1d( 1.5, [0 2], 20, [0 3], 600, @u3c_init, @u3c_bndry );

mesh( t3e, x3e, U3e )frames = animate( U3e );frames2gif( frames, 'U3e.gif' );

The Crank-Nicolson Method

74

Summary

We have looked at the heat-conduction/diffusion equation– We developed the Crank-Nicolson method– You will implement the algorithm– Unlike the previous implementation, there are less

restrictions on

• Large values of this ratio may cause transient oscillations

– We defined insulated boundaries• Considered their approximation using Matlab

2

t

h

The Crank-Nicolson Method

75

References

[1] Glyn James, Modern Engineering Mathematics, 4th Ed., Prentice Hall, 2007, p.782.

[2] Glyn James, Advanced Modern Engineering Mathematics, 4th Ed., Prentice Hall, 2011, p.164.

The Crank-Nicolson Method