TERMO2005 CAP10 Primera Ley Sistemas Abiertos Mayo 2005

Post on 05-Dec-2015

230 views 1 download

description

termodinamica

Transcript of TERMO2005 CAP10 Primera Ley Sistemas Abiertos Mayo 2005

CAPÍTULO 11CAPÍTULO 11

Primera Ley Sistemas Primera Ley Sistemas AbiertosAbiertos

INTRODUCCIÓN:

En este capítulo veremos…..desde sistemas cerrados hasta sistemas abiertos…pasando por teoría de válvulas e interpretaciones de v dP.

Turbo Compresor de un motor a Petróleo Diesel

Turbina de Vapor del Lab. Energìa PUCP- Ejemplo de sistemas abiertos.

INDICEINDICE

INTRODUCCIONINTRODUCCION11.1 Primera Ley de Termodinámica -11.1 Primera Ley de Termodinámica -

Sistemas Abiertos o Volúmenes de Sistemas Abiertos o Volúmenes de ControlControl

11.2 Máquinas que trabajan con sistemas 11.2 Máquinas que trabajan con sistemas abiertosabiertos

11.3Ecuación de Continuidad11.3Ecuación de Continuidad11.4 Primera Ley Sistemas abiertos11.4 Primera Ley Sistemas abiertos11.5Sistemas Abiertos Uniformes.11.5Sistemas Abiertos Uniformes.ProblemasProblemas

La energía suministrada al sistema es igual al cambio de energía en el sistema más la energía evacuada del sistema.

10.1 PRIMERA LEY DE LA TERMODINAMICA Sistema Abiertos o Volumen de Control VC

“LA ENERGIA NO SE CREA NI SE DESTRUYE, SOLO SE TRANSFORMA”. (PROCESOS REVERSIBLES E IRREVERSIBLES)

evacuadasistemadasuministra EEE

0 sistemaE

En este Capítulo veremos el caso cuando el E sistema es cero, que es en la mayoría de las máquinas que tienen sistemas abiertos, se llama Volumen de Control Estacionario o Permanente

Todo lo que entra es igual a lo que sale!!

evacsum EE

Máquinas que trabajan con Sistemas Abiertos

SISTEMAS ABIERTOS:

-Bombas, calderas, turbinas, compresores, condensadores, válvulas.

Sistema de Refrigeración Industrial Turbina a Vapor , 10 kW de Potencia

Turbina a gas - Motor de Helicóptero

Turbina a gas de 40 kW

10.2 Ecuación de Continuidad

Esta es una Turbina de avión, dónde estaría la Tobera ?

Para qué sirve en este caso ?

Si entra un flujo de masa de 5, cuánto de flujo de masa saldrá ?

10.3 VOLUMEN DE CONTROL ESTACIONARIO (PERMANENTE): FEES

Condiciones:

1. Volumen de control no se mueve. (no cambia)2. Flujo que entra = Flujo que sale.3. El cambio de energía en un VC es igual a cero. El estado en un VC cualquiera no varía con el tiempo o las condiciones de salida y entrada son constantes.

me = ms. .

Múltiples usos de las Toberas

De cada una de las figuras de estas páginas diga Ud. la utilidad de las toberas en cada caso.

www.menbers aol.com

www.menbers aol.com

www.tfd.chalmers.se

www.hikeytech.com

www.onera.frwww.onera.fr

www.rollsroyce.com

www.tuyere-moteur-vulcain

www.istp.nasa.gov

10.4 Primera Ley Sistemas Abiertos Reversibles

E N G E N E R A L :

evacuada

io)estacionar VC( 0

sistemaistradaminsu EEE

gzE

c

Otros

mmm

dContinuida

p

2E

Pvuh

:datos

:

2

c

21

evacuadasistemadasuministra EEE

111111

1

21

11

12

min

)2

(

:

vPmVPW

gzc

um

Q

E

f

istradasu

222222

2

22

22 )2

(

12

vPmVPW

gzc

um

W

E

f

t

evacuada

12

12

)(2

)()(

)2

()2

(

12

21

22

11221212

2222

22

221111

21

1112

t

t

Wgzgzcc

vPvPuumQ

vPmgzc

umWvPmgzc

umQ

dqPdvduvdPdh

vdPPdvdudh

Pvuh

:Además

(kJ/kg) )(

kW)(kJ/s )(

12

12

1212

1212

tpc

tpc

weehhmq

WEEhhmQ

S I S T E M A S A B I E R T O S R E V E R S I B L E S : E C U A C I Ó N D E L P O R T A D O R ( E . P . E )

vdP-dhdq vdPPdvdhdu

Pdvdudq

(kJ/kg) vdP)hh(q2

1

1212

E C U A C I Ó N D E L S I S T E M A E N T E R O ( E . S . E )

(kJ/kg) w)gzgz(2

cc)hh(q

W)gzgz(2

cc)hh(mQ

12

12

t12

2

1

2

21212

t12

2

1

2

21212

E C U A C I Ó N D E T R A N S F E R E N C I A D E E N E R G I A ( E . T . E )

(kJ/kg) )zz(g2

ccvdPw

w)gzgz(2

ccvdP

12

2

1

2

22

1

t

t12

2

1

2

22

1

12

12

Con estas ecuaciones debemos resolver todos los problemas de Sistemas Abiertos; en realidad solo son dos ecuaciones, pues cualquiera tercera será redundante

Entalpía (h)

a)Sustancias Puras:CP no es constante, entonces la entalpía (h) se calcula de tablas.

Pv-hu

:u existe no Si -

A.1.4y A.1.3 Tablas :campana la de fuera cae

)(hh

)(uu

A.1.2y A.1.1 Tablas :mezcla de Zona-

f

f

Si

hhx

uux

fg

fg

b) Gases Ideales

dPVdTcmQd

dPVdhmQd

dTcdh

p

p

Los valores del cp de cada sustancia varian con la temperatura, solamente son constantes si los consideramos como gases ideales.

I n t e r p r e t a c i ó n d e : 2

1

vdP

AvPw

AvPw

AvdP

APdv

222f

111f

2

1

2

1

2

1

112211221122

2

1

11222)-v(1

2

1

112

2

1

2

2

1

2

2

1

21

2

1

1

Pdvn)vPvP(n1

n)vPvP(

n1

)vPvP(vdP

n1

)vPvP(wPdv :opolitrópic proceso un Para

)vPvP(PdvvdP

vPPdvvPvdP

2

1

2

1

Pdv

vdP

n :Luego

O t r o M é t o d o : P a r a h a l l a r “ n ”

P o i s s o n : n"" Despejamos P

P

T

T n

1n

1

2

1

2

En un ciclo, siempre la sumatoria de los trabajos (sea el que sea), sera igual a la sumatoria de los calores, e igual al área dentro de una CURVA P - V.

En el osciloscopio se puede ver la curva P v n, y luego calcular el área y por lo tanto el Trabajo de Cambio de volumen Wv

Coeficiente de Joule Thompson - Válvulas

COEFICIENTE DE JOULE THOMSON: Curva de Inversión

Consideremos la situación de la figura mostrada. Por un conducto de área constante, fluye un gas real. Entre los puntos 1 y 2 se coloca una placa con un orificio, el cual causa una cierta caída de presión en la corriente. El proceso se denomina proceso de estrangulamiento, y si los cambios de energía cinética y potencial fueran despreciables, la ecuación de balance energético para flujo estacionario adiabático se reduciría a:

El proceso de estrangulación se presenta en las expansiones adiabáticas de los fluidos en las válvulas, cuando las energías cinéticas son despreciables tanto a la entrada como a la salida.Si en el diagrama T-P, se traza la información experimental de los gases reales se obtiene un conjunto de curvas. El lugar geométrico de los máximos de las curvas de entalpía constante se denomina curva de inversión y el punto del máximo en cada curva se llama punto de inversión. La pendiente de una curva isoentálpica se denomina coeficiente de Joule Thomson: uj

La entalpía de un Gas Ideal es función de la temperatura solamente, de tal modo que una línea de entalpía constante, en un gas ideal, es también de temperatura constante.

E j e m p l o : S e t i e n e u n c o m p r e s o r q u e r e c i b e 0 . 2 k g / s d e A r g ó n a 2 0 ° C y a 1 b a r p a r a e n t r e g a r l o s a 3 0 0 ° C y a 2 5 b a r e s . E l á r e a d e l a s e c c i ó n t r a n s v e r s a l d e l t u b o d e a d m i s i ó n e s d e 2 . 8 x 1 0 - 3 m 2 y e l d e s a l i d a t i e n e 3 x 1 0 - 4 m 2 . S i l a c o m p r e s i ó n e s p o l i t r ó p i c a r e v e r s i b l e y e l A r g ó n s e c o m p o r t a c o m o g a s i d e a l . D e t e r m i n a r : - E l e x p o n e n t e P o l i t r ó p i c o . - E l c a m b i o d e E n e r g í a C i n é t i c a . - E l W t s u m i n i s t r a d o - E l Q t r a n s f e r i d o . E x p o n e n t e P o l i t r ó p i c o :

26.1nP

P

T

Tn

1

2

1

2

C a m b i o d e E n e r g í a C i n é t i c a :

W6.88)55.43(79.312

2.0E

s/m 79.31103105.2

5731020813.02.0

AP

RTmc

s/m 55.43105.2101

2931020813.02.0

AP

RTmc

cAV :Donde 2

)cc(mE

22K

35

3

22

222

35

3

11

111

2

1

2

2K

T r a b a j o s u m i n i s t r a d o :

kW386.56W

W56386)6.88(56475W

W56475n1

TTRmnPdVndPV

EEdPVW

)21(t

)21(t

122

1

2

1

0

PK

2

1

)21(t

C a l o r T r a n s f e r i d o :

W8.27337Q

WE)TT(cmQ

A.8) Tabla:(c Tch :IdealGas ser Por

WEE)HH(Q

)21(

)21(tK12p2)-(1

pP

)21(t

0

PK1221

E j e m p l o : U n c o m p r e s o r c o m p r i m e p o l i t r ó p i c a m e n t e y r e v e r s i b l e m e n t e 0 . 0 2 k g / s d e a i r e m e d i d o s e n e l t u b o d e e n t r a d a a 1 b a r y 2 4 ° C , l a p o t e n c i a t é c n i c a n e c e s a r i a p a r a a c c i o n a r e l c o m p r e s o r e s 1 . 7 4 k W y e l c a l o r e v a c u a d o a l a m b i e n t e e s e l 1 0 % d e l a p o t e n c i a t é c n i c a . C o n s i d e r a r e l a i r e c o m o g a s i d e a l , E P = 0 , E K = 0 . S e p i d e : - D i b u j a r e l e s q u e m a t é c n i c o y e l d i a g r a m a P - v . - H a l l a r e l e x p o n e n t e P o l i t r ó p i c o y e l W v . - T y P a l f i n a l d e l a c o m p r e s i ó n . E s q u e m a : E x p o n e n t e p o l i t r ó p i c o , t r a b a j o d e c a m b i o d e v o l u m e n :

kW174.0Q

kW2925.1W

346.1n

W1.0Q

W)1k(n

nkQ :sabe Se

WnVPdndPVW

WEE)HH(Q

)21(

)21(V

)21(t)21(

)21(t2)-(1

)21(V

2

1

2

1

)21(t

)21(t

0

P

0

K12)21(

T e m p e r a t u r a y P r e s i ó n a l f i n a l d e l a c o m p r e s i ó n :

bar4793.3PP

P

T

T

:Además

C26.136T

566.1)TT(mc

566.11.0

174.0174.0WQHH

2

n

1n

1

2

1

2

2

12P

)21(t)21(12

Ejemplo SISTEMAS ABIERTOS:

Bomba:

Caldera:12)21(t

12f112

)21(t12f1

2

1

12

f112

2

1

12

2

1

12

0

2

10

12

adiabático,0

12

hhw

)PP(vhh

w)PP(vvdP)hh(

vvv

0vdP)hh(

vdP)hh(Pdv)uu(qq

isobárica,0

3

2

23

0

3

20

2323 vdP)hh(Pdv)uu(qq

12)21(t

12f112

hhw

)PP(vhh

23)32( hhq

Turbina:

Condensador:

344)-t(3

w

4

3

34)43(

hhw

:adiabáticaes turbina la Si

vdP)hh(q

)43(t

0

1

4

41

0

1

40

4141 vdP)hh(Pdv)uu(qq

41)14( hhq

CICLOS POSITIVOS (Máquinas Térmicas)

Se suministra calor para obtener trabajo. El resto de calor se evacua a una fuente de baja temperatura

Sabemos que:Eficiencia Térmica:

1Q

Q1

Q

QQ

QW

A

B

A

BAth

(Ciclos)

QB (-) sale del sistemaQA (+) suministrado al sistema

QWWW Vt

Ejemplo: Central Térmica:

1Q

Q1

Q

QQ

Q

WW

Q

WW

Q

WW

Q

W

23

41

23

4123th

23

)21(t)43(t

sum

turbinabombath

sum

Vt

sumth

Sistemas Abiertos UNIFORMES - FEUSS IS T E M A S A B IE R T O S U N IF O R M E S (F E U S )

VC el por realizadostrabajos de sumatoria

t

masa la con sale que energía

s

2

sss

0E ioestacionar VC SiVC el en E

VC1122

masa la con entra que energía

e

2

eee

VC de salen yentran quecalores de sumatoria

ts

2

sssVC1122e

2

eee

112212

22

2

222

11

2

111

2

ts

tevacuado

ioestacionar VC

tistradominsu

tsistema

ts

2

ssse

2

eee

ts

2

ssse

2

eee

22221111

)21(t2

2

2221

2

11121

W)gz2

ch(m)umum()gz

2

ch(mQ

:tiempo de intervalo un En

W)gz2

ch(m)umum()gz

2

ch(mQ

:Luego

umumEEE

Egz2

cum

Egz2

cum

Egz2

cum

0E Si

EEE

:Ley Primera Por

W)gz2

ch(m)gz

2

ch(mQ

:tiempo de intervalo un En

W)gz2

ch(m)gz

2

ch(mQ

:W yQvarios salidas y entradas yvarias existen Si

vPuh yvPuh :Además

W)gz2

ch(m)gz

2

ch(mQ

Resumen de Primera Ley de Termodi-námica

R E S U M E N

S I S T E M A C E R R A D O

2

1

12)21(

)21(V12)21(

12

)21(V1122)21(

PdVUUQ

W)uu(mQ

mmm

W)umum(Q

S I S T E M A A B I E R T O

)hh(mW

o)(adiabátic0 Q mm 0EE

:siempre Casi

W)hgz2

c(m)hgz

2

c(mQ

212)-t(1

21PK

)21(V22

2

2211

2

11)21(

S I S T E M A C E R R A D O - A B I E R T O

tablas) deu (h, :Pura Sustancia

PdvTcTcTcu

Tch

:Ideal Gas

PdVW0 Q 0E mmm

W)umum()gz2

ch(mQ

2

1

2vePv

ePe

2

1

2)-V(1Pe12

V1122e

2

eee

I N T E R C A M B I A D O R D E C A L O R

)21()43(d

d

)21()43(

12c2)-(1

4f3f4)-(3

4f2c3f1c

PK

QQQ :adiabáticoes no Si

0Q :adiabáticoes Si

QQ

)hh(mQ

:A-A Para

hmhmQ

.-)-.-.-.- ( VC otro Para

hmhmhmhm

0E 0E Adiabático

PROBLEMAS-PRIMERA LEY PARA SISTEMAS Y CICLOS1. El aire contenido en un recipiente se comprime mediante un pistón cuasiestáticamente. Se cumple durante la compresión la relación Pv1.25 = cte. La masa de aire es de 0.1kg y se encuentra inicialmente a 100kPa, 20°C y un volumen que es 8 veces el volumen final. Determinar el calor y el trabajo transferido. Considere el aire como gas ideal.

2. El dispositivo mostrado consta de un cilindro adiabático dividido en dos compartimientos (A y B) mediante una membrana rígida perfecta conductora de calor (en todo momento la temperatura de los compartimentos varía en la misma magnitud, es decir «TA=»TB). En A se tiene 0,2kg de Nitrógeno encerrado mediante un pistón adiabático, y en B se tiene 0.25kg de agua, inicialmente a 2.5kPa en un volumen de 0.8158m3. Durante el proceso el lado A es calentado por una resistencia eléctrica proporcionando 100kJ, y al B se transfiere calor (700kJ) hasta que el agua esté como Vapor Saturado. Si P0=100kPa y el cambio de volumen de A es 0.7m3, hallar:a)Calor intercambiado entre A y B. b)Trabajo de cambio de volumen realizado por el Nitrógeno. c)Trabajo técnico involucrado en el proceso.

1. El flujo de masa de vapor a una turbina es de 1.5kg/s, el calor transferido desde la

turbina es de 8.5kW. Se tienen los siguientes datos:

CONDICION DE ENTRADA

CONDICION DE SALIDA

PRESION TEMPERATURA CALIDAD DE VAPOR VELOCIDAD ALTURA

2MPa 350°C

- 50m/s

6m

0.1MPa

100% 200m/s

3m.

4. Vapor a presión de 1.5MPa y 300°C, fluye en una tubería. Un recipiente inicialmente vacío se conecta a la tubería por medio de una válvula hasta que la presión es de 1.5MPa, luego se cierra la válvula. Despreciar los cambios de energía cinética y potencial, el proceso es adiabático. Determinar la temperatura final del vapor.

En el esquema técnico que se muestra en la figura se muestra parte de una planta térmica a vapor de

agua. Si en el condensador se evacua 17.2MW de calor y la bomba consume 50kW de potencia, determinar la potencia técnica que desarrolla cada turbina, en kW. CONSIDERACIONES:

- adiabáticos: todos los elementos - isobáricos : intercambiador y condensador - v4=v0 - h6=(h7-20)kJ7kg - ep y ec despreciables

E P(kPa) T(°C) H (kJ/kg) x C 1 5000 400 2 500 0.96 3 20 4 LS 5 6 5000 7 LS 8

7. En el esquema mostrado los procesos en el compresor , en la turbina adiabática y en el condensador isobárico, se puede considerar FEES. La turbina suministra potencia para accionar el compresor y el generador eléctrico.El aire realiza un proceso politrópico (n = 1.3), a través del compresor. Para las condiciones dadas en el esquema, se pide determinar:a)La potencia suministrada al generador eléctrico (kW) b)Los calores transferidos en el compresor y en el condensador (kW)

8.Vapor de agua ingresa a la tobera adiabática de una turbina con una velocidad despreciable a 3MPa y 350°C, y sale de la tobera a 1.5MPa y a la velocidad de 550m/s. El flujo de vapor a través de la tobera es de 0.5kg/s. Se pide determinar:

a. La calidad (si es VH) o la temperatura (si es VSC)b. El diámetro, a la salida de la tobera

9. Fluye aire, reversible y estacionariamente, a través de una tobera adiabática , ingresa a 2bar y 27°C con una velocidad de 30m/s y sale con una velocidad de 200m/s. Se pide determinar: i.La presión del aire a la salida de la tobera, en kPa

ii.La relación entre los diámetros de entrada y salida de la tobera.

10. Un compresor comprime politrópica y reversiblemente, en un proceso FEES, 400m3/h de aire desde 1 bar y 17°C hasta 6 bar, los diámetros internos de los tubos, de entrada y de salida, son iguales a 30mm. Si el exponente politrópico del proceso es de 1.32, se pide determinar la potencia técnica requerida y el calor transferido en el compresor, en kW.

11. Vapor de amoniaco fluye a través de una tubería a una presión de 1MPa y a una temperatura de 70°C. Conectada a la tubería se tiene un tanque rígido y adiabático de 3m3, inicialmente vacío. Se abre la válvula que conecta al tanque con la tubería, y fluye amoniaco hasta que dentro del tanque se tenga una presión de 1MPa; se pide determinar la masa de amoniaco que ingresa al tanque durante el proceso, en kg.

12.En la figura se muestra una turbina a vapor de agua de paredes adiabáticas que descarga vapor directamente al condensador isobárico y adiabático, a 10kPa. En los puntos (2) y (3) se extraen vapor de la turbina para procesos industriales en proporciones del 10% y 20% de la masa de vapor que ingresa a la turbina, respectivamente. Considerando que todos los procesos son FEES y que la turbina genera una potencia de 10MW, se pide determinar la potencia la potencia necesaria para accionar a la bomba, en kW, y el caudal de agua de enfriamiento requerido, en m3/s.

P1= 2MPa T1= 300°CP2= 0.5MPa T2= 200°CP3= 0.2MPa T3= 150°CP6= 2MPa x4= 90%P7= 0.1MPa T7= 20°C

T8= 30°CAdemás: V5 = V6

13.Un compresor a pistón comprime politrópicamente y reversiblemente 0.02kg/s de aire medidos en la tubería de entrada a 1 bar y 24°C. La potencia técnica necesaria para accionar le compresor es de 2kW, y el calor evacuado al ambiente es el 10% de esta potencia técnica. Considere el aire como gas ideal y desprecie los terminos de Ek y Ep.

a) Dibujar el proceso en el diagrama P-vb) Calcular el trabajo de cambio de volumen.c) Determinar la T(°C) y P (bar) a la salida del compresor.

14. Se tiene un recipiente cilíndrico, adiabático en toda su superficie, excepto en el fondo. Un pistón adiabático sin peso, se apoya inicialmente en unos topes, dividiendo en dos partes el recipiente. En la parte superior inicialmente se tiene aire a 2bar ocupando 0.6m3. En la parte inferior se tiene 0.5kg de agua a 1bar y una calidad de vapor de 17%.Se calienta inicialmente el agua, hasta que su presión es de 3bar. El proceso es reversible. Considerando el aire como gas ideal y que los calores específicos permanecen constantes. Determinar:a.La temperatura o calidad de vapor.b.El calor transferido al agua en kJ.

15. Se tiene 1.5kg de aire (considere como gas ideal) en un cilindro, con un pistón sin rozamiento, y realizando un ciclo compuesto por los siguientes procesos:1-2: compresión adiabática, 2-3: expansión isotérmica, 3-1: proceso isobáricoSi P1=0.1Mpa y T1=25°C y después de la compresión se tiene ¾ de volumen inicial, se pide:a.Tabular P, v y T para todos los estados. b.Calcular la sumatoria de calores.c.Calcular el rendimiento o COP del ciclo.

16.En la central térmica instalada, el vapor de agua produce trabajo al expandirse en turbinas de dos etapas (alta y baja presión) con sobrecalentamiento intermedio.La bomba y la turbina son adiabáticas, los cambios de Ek y Ep son despreciables. Se tiene los siguientes datos:En (1) Líquido saturado; P3 = 20bar y T3 = 300°C, P4 = 5bar y es VS; T5 =T3 ; P6 = 0.2bar; x6 = 93%.Tanto el caldero como el sobrecalentador intermedio y el condensador son isobáricos.El flujo de masa es 0.2kg/s, considerar al líquido como incompresible (v1 = v2).Se pide:a)El diagrama P-v del ciclo.b)Las entalpías específicas (kJ/kg)c)La potencia en cada turbina y en la bomba. (kW)d)Los calores suministrados y evacuados. (kW)e)El rendimiento térmico de la central en %.