STATISTICAL ANALYSIS - LECTURE 09

Post on 17-Apr-2022

2 views 0 download

Transcript of STATISTICAL ANALYSIS - LECTURE 09

STATISTICAL ANALYSIS -LECTURE 09Dr. Mahmoud Mounir

mahmoud.mounir@cis.asu.edu.eg

STATISTICAL INFERENCE

Recap

Statistics

Descriptive Inferential

Estimation

Point Estimation

ยต = เดฅ๐’™ and p = เท๐’‘

Interval

(Lower Limit, Upper Limit)

Hypothesis

Statistical Inference

โžข The statistical inference is the process of making

judgment about a population based on the

properties of a random sample from the

population.

Estimators

Estimator (Sample Statistic)

Population Parameter

เดฅ๐’™ ESTIMATES ยต

S2 ESTIMATES ฯƒ2

S ESTIMATES ฯƒ

เท๐’‘ ESTIMATES p

เดฅ๐’™๐Ÿ- เดฅ๐’™๐Ÿ ESTIMATES ยต1 - ยต2

เท๐’‘๐Ÿ โˆ’ เท๐’‘๐Ÿ ESTIMATES p1 โ€“ p2

Central Limit TheoremSampling Distribution of Sample Mean = Distribution of เดฅ๐’™

Sampling Distribution of sample Proprtion = Distribution of เท๐’‘

Central Limit TheoremDifference Between Two Sample Means

Difference Between Two Sample Proportions

Estimation

Figure: The steps required to draw the statistical inference (estimation) of

an unknown parameter.

Recap ๐ŸŽ. ๐ŸŽ๐Ÿ“ ๐ŸŽ. ๐ŸŽ๐Ÿ“

โˆ’๐’›๐’‚ +๐’›๐’‚P (Z < -Za) = P (Z > +Za)

P (Z < -Za) = 0.05

From the Z- Table, we can find the value of โ€“Za

Recap ๐ŸŽ. ๐ŸŽ๐Ÿ๐Ÿ“ ๐ŸŽ. ๐ŸŽ๐Ÿ๐Ÿ“

โˆ’๐’›๐’‚ +๐’›๐’‚P (Z < -Za) = P (Z > +Za)

P (Z < -Za) = 0.025

From the Z- Table, we can find the value of โ€“Za

Recap ๐ŸŽ. ๐ŸŽ๐ŸŽ๐Ÿ“ ๐ŸŽ. ๐ŸŽ๐ŸŽ๐Ÿ“

โˆ’๐’›๐’‚ +๐’›๐’‚P (Z < -Za) = P (Z > +Za)

P (Z < -Za) = 0.005

From the Z- Table, we can find the value of โ€“Za

Standard Z-Score (Zฮฑ)

Standard Z-Score (Zฮฑ)

Standard Z-Score (Zฮฑ)

Confidence Interval (CI)

โžข Is a range of values that likely would contain an

unknown population parameter.

โžข This means that if we used the same sampling

method to select different samples and computed

an interval estimate for each sample, we would

expect the true population parameter to fall

within the interval estimates 95% of the time.

Confidence Interval (CI)

Population Parameter = Estimator ยฑ Margin of Error (d)

Where:

Margin of Error (d) = Critical Value of Z * Standard Error

โˆˆ [ ],Population Parameterโˆˆ

[Estimator โˆ’ Margin of Error (d) , Estimator + Margin of Error (d)]

Standard Error for Different Sample Statistics

Estimator (Sample Statistic)

Standard Error

เดฅ๐’™

เท๐’‘

เดฅ๐’™๐Ÿ- เดฅ๐’™๐Ÿ

เท๐’‘๐Ÿ โˆ’ เท๐’‘๐Ÿ

Confidence Interval (CI)

(1-ฮฑ) Confidence Level

ฮฑ Confidence Coefficient

โˆ’๐’›(๐Ÿโˆ’ ฮค๐œถ ๐Ÿ) ๐’›(๐Ÿโˆ’ ฮค๐œถ ๐Ÿ)

Confidence Interval (CI)

If (1-ฮฑ) = 95% or 0.95

(1-ฮฑ) = 0.95เต—๐œถ ๐Ÿ = ๐ŸŽ. ๐ŸŽ๐Ÿ๐Ÿ“ เต—๐œถ ๐Ÿ = ๐ŸŽ. ๐ŸŽ๐Ÿ๐Ÿ“

Critical Value for Z:

We wish to estimate the average number of heart

beats per minute for a certain population. The

average number of heart beats per minute for a

sample of 49 subjects was found to be 90. Assume

that these 49 patients constitute a random sample,

and that the population is normally distributed with

a standard deviation of 10. Construct 90, 95, 99

percent confidence intervals for the population

mean.

Example (1)

Solution๐‘› = 49 าง๐‘ฅ = 90 ๐œŽ = 10

90% confidence interval

๐Ÿ โˆ’ ๐›‚ = ๐ŸŽ. ๐Ÿ— ๐›‚ = ๐ŸŽ. ๐Ÿ๐›‚

๐Ÿ=. ๐ŸŽ๐Ÿ“

๐Ÿ โˆ’๐›‚

๐Ÿ=. ๐Ÿ—๐Ÿ“

๐ณ๐Ÿโˆ’๐›‚/๐Ÿ = ๐ฉ ๐ณ < ๐›‚/๐Ÿ

= ๐ฉ ๐ณ < ๐ŸŽ. ๐ŸŽ๐Ÿ“ = ๐Ÿ. ๐Ÿ”๐Ÿ’๐Ÿ“

๐› = เดค๐ฑ ยฑ ๐ณ๐Ÿโˆ’๐›‚/๐Ÿ๐›”

๐ง

๐› = ๐Ÿ—๐ŸŽ ยฑ ๐Ÿ. ๐Ÿ”๐Ÿ’๐Ÿ“๐Ÿ๐ŸŽ

๐Ÿ’๐Ÿ—= ๐Ÿ—๐ŸŽ ยฑ ๐Ÿ. ๐Ÿ‘๐Ÿ“๐› โˆˆ ๐Ÿ–๐Ÿ•. ๐Ÿ”๐Ÿ“, ๐Ÿ—๐Ÿ. ๐Ÿ‘๐Ÿ“

Confidence level 1 โˆ’ ๐›ผ

Confidence coefficient ๐›ผ

1 โˆ’ ๐›ผ/2 โ†’ ๐œ™ ๐‘ง1โˆ’๐›ผ/2 = ๐‘ ๐‘ง < ๐›ผ/2

Solution๐‘› = 49 าง๐‘ฅ = 90 ๐œŽ = 10

95% confidence interval

๐Ÿ โˆ’ ๐›‚ = ๐ŸŽ. ๐Ÿ—๐Ÿ“ ๐›‚ = ๐ŸŽ. ๐ŸŽ๐Ÿ“๐›‚

๐Ÿ=. ๐ŸŽ๐Ÿ๐Ÿ“

๐Ÿ โˆ’๐›‚

๐Ÿ=. ๐Ÿ—๐Ÿ•๐Ÿ“

๐ณ๐Ÿโˆ’๐›‚/๐Ÿ = ๐ฉ ๐ณ < ๐›‚/๐Ÿ

= ๐ฉ ๐ณ < ๐ŸŽ. ๐ŸŽ๐Ÿ๐Ÿ“ = ๐Ÿ. ๐Ÿ—๐Ÿ”๐ŸŽ

๐› = เดค๐ฑ ยฑ ๐ณ๐Ÿโˆ’๐›‚/๐Ÿ๐›”

๐ง

๐› = ๐Ÿ—๐ŸŽ ยฑ ๐Ÿ. ๐Ÿ—๐Ÿ”๐ŸŽ๐Ÿ๐ŸŽ

๐Ÿ’๐Ÿ—= ๐Ÿ—๐ŸŽ ยฑ ๐Ÿ. ๐Ÿ–

๐› โˆˆ ๐Ÿ–๐Ÿ•. ๐Ÿ, ๐Ÿ—๐Ÿ. ๐Ÿ–

Confidence level 1 โˆ’ ๐›ผ

Confidence coefficient ๐›ผ

1 โˆ’ ๐›ผ/2 โ†’ ๐œ™ ๐‘ง1โˆ’๐›ผ/2 = ๐‘ ๐‘ง < ๐›ผ/2

Solution๐‘› = 49 าง๐‘ฅ = 90 ๐œŽ = 10

Confidence level 1 โˆ’ ๐›ผ

Confidence coefficient ๐›ผ

1 โˆ’ ๐›ผ/2 โ†’ ๐œ™ ๐‘ง1โˆ’๐›ผ/2 = ๐‘ ๐‘ง < ๐›ผ/2

99% confidence interval

๐Ÿ โˆ’ ๐›‚ = ๐ŸŽ. ๐Ÿ—๐Ÿ— ๐›‚ = ๐ŸŽ. ๐ŸŽ๐Ÿ๐›‚

๐Ÿ=. ๐ŸŽ๐ŸŽ๐Ÿ“

๐Ÿ โˆ’๐›‚

๐Ÿ=. ๐Ÿ—๐Ÿ—๐Ÿ“

๐ณ๐Ÿโˆ’๐›‚/๐Ÿ = ๐ฉ ๐ณ < ๐›‚/๐Ÿ

= ๐ฉ ๐ณ < ๐ŸŽ. ๐ŸŽ๐ŸŽ๐Ÿ“ = ๐Ÿ. ๐Ÿ“๐Ÿ•๐Ÿ”

๐› = เดค๐ฑ ยฑ ๐ณ๐Ÿโˆ’๐›‚/๐Ÿ๐›”

๐ง

๐› = ๐Ÿ—๐ŸŽ ยฑ ๐Ÿ. ๐Ÿ“๐Ÿ•๐Ÿ”๐Ÿ๐ŸŽ

๐Ÿ’๐Ÿ—= ๐Ÿ—๐ŸŽ ยฑ ๐Ÿ‘. ๐Ÿ”๐Ÿ–

๐› โˆˆ ๐Ÿ–๐Ÿ”. ๐Ÿ‘, ๐Ÿ—๐Ÿ‘. ๐Ÿ•

In a simple random sample of machine parts, 18

out of 225 were found to have been damaged in

shipment. Establish a 95% confidence interval

estimate for the proportion of machine parts that

are damaged in shipment.

Suppose there are 50,000 parts in the entire

shipment. How can we translate from the

proportions to actual numbers?

Example (2)

Solution๐’ = ๐Ÿ๐Ÿ“๐Ÿ“ ๐’™ = ๐Ÿ๐Ÿ– เท๐’‘ =

๐Ÿ๐Ÿ–

๐Ÿ๐Ÿ“๐Ÿ“= ๐ŸŽ. ๐ŸŽ๐Ÿ–

๐Ÿ โˆ’ ๐›‚ = ๐ŸŽ. ๐Ÿ—๐Ÿ“ ๐›‚ = ๐ŸŽ. ๐ŸŽ๐Ÿ“๐›‚

๐Ÿ=. ๐ŸŽ๐Ÿ๐Ÿ“

๐Ÿ โˆ’๐›‚

๐Ÿ=. ๐Ÿ—๐Ÿ•๐Ÿ“ ๐ณ๐Ÿโˆ’๐›‚/๐Ÿ = ๐ฉ ๐ณ < ๐›‚/๐Ÿ = ๐ฉ ๐ณ < ๐ŸŽ. ๐ŸŽ๐Ÿ๐Ÿ“ = ๐Ÿ. ๐Ÿ—๐Ÿ”๐ŸŽ

๐ฉ = เท๐ฉ ยฑ ๐ณ๐Ÿโˆ’๐›‚/๐Ÿเท๐ฉ ๐Ÿ โˆ’ เท๐ฉ

๐ง

๐ฉ = ๐ŸŽ. ๐ŸŽ๐Ÿ– ยฑ ๐Ÿ. ๐Ÿ—๐Ÿ”๐ŸŽ๐ŸŽ. ๐ŸŽ๐Ÿ– ๐ŸŽ. ๐Ÿ—๐Ÿ

๐Ÿ๐Ÿ๐Ÿ“

= ๐ŸŽ. ๐ŸŽ๐Ÿ– ยฑ ๐Ÿ. ๐Ÿ—๐Ÿ”๐ŸŽ ๐ŸŽ. ๐ŸŽ๐Ÿ๐Ÿ”๐Ÿ—๐Ÿ—= ๐ŸŽ. ๐ŸŽ๐Ÿ– ยฑ ๐ŸŽ. ๐ŸŽ๐Ÿ‘๐Ÿ“

๐ โˆˆ ๐ŸŽ. ๐ŸŽ๐Ÿ’๐Ÿ“, ๐ŸŽ. ๐Ÿ๐Ÿ๐Ÿ“

Thus, we are 95% certain that

the population of machine parts

damaged in shipment is between ๐ŸŽ. ๐ŸŽ๐Ÿ’๐Ÿ“ ๐’‚๐’๐’… ๐ŸŽ. ๐Ÿ๐Ÿ๐Ÿ“

SolutionIf there are 50,000 parts in the entire shipment N=50,000 then

0.045 50000 = 22500.115 50000 = 5750

So, we can be 95% confident that there are between 2250 and

5750 defective parts in the whole shipment