Stationary Incompressible Viscous Flow Analysis by a Domain Decomposition Method

Post on 01-Jan-2016

48 views 4 download

Tags:

description

Stationary Incompressible Viscous Flow Analysis by a Domain Decomposition Method. Hiroshi Kanayama, Daisuke Tagami and Masatsugu Chiba ( Kyushu University). Contents. Introduction Formulations Iterative Domain Decomposition Method for Stationary Flow Problems Numerical Examples - PowerPoint PPT Presentation

Transcript of Stationary Incompressible Viscous Flow Analysis by a Domain Decomposition Method

Stationary Incompressible Viscous Flow Analysis by a Domain Decomposition Method

Hiroshi Kanayama, Daisuke Tagami

and Masatsugu Chiba( Kyushu University )

Contents Introduction Formulations Iterative Domain Decomposition Method for Stationary Flow Problems Numerical Examples     1 million DOF cavity flow, DDM v.s.

FEM A concrete example Conclusions

Objectives

In finite element analysis for stationary flow problems, our objectives are to analyze large scale (10-100 million DOF) problems.Why Iterative DDM ?

HDDM is effective.

Ex. Structural analysis ( 100 million DOF:

1999 R.Shioya and G.Yagawa )

Formulations

Stationary Navier-Stokes Equations Weak Form Newton Method Finite Element Approximation Stabilized Finite Element Method Domain Decomposition Method

.2

1)(

),(2),(

,0

,),()(

:

i

j

j

iij

ijijij

x

u

x

uD

Dpp

p

u

uu

u

fuuu

jn u:D

.delta sKronecker':],m[ viscositykinematic:

,]mforce[body:],mpressure[:,]smvelocity[:2

222

ijs

ssp

fu

Stationary Navier-Stokes Eqs.

0),(: nu pN

Weak Form

thatsuch,Find QVp u

vfuvvuvuu ,,,,,, qbpbsa QVq ,for v

.),0(,on;

,

2

31

LQ

VVXV

HX

D vv

uu

vuvu

vuwvuw

qqb

DDs

a

d

mllmlm

:,

)()(2:,

:,,

,

Newton Method

thatsuch,Find QVp kk u

vuuvfuv

vuvuuvuu

,,,,,

,,,,,11

11

kkkk

kkkkk

aqbpb

saa

QVq ,for v

vfuvvuvuwvwu ,~

,,,,,,, qbpbsaa

fuuf

wu

uu

~11

1

kk

k

k

k

pp

Finite Element Approximation0

1 2

3

element. ltetrahedraais,

elements, ltetrahedraofconsisting

ofiontriangulatA

hK

KK

h

).0(,on;

,,|;

,,|;

10

31

30

hhDhhhh

hKhhh

hKhhh

VVXV

KKPqCQqQ

KKPCXX

vv

vv

Stabilized Finite Element Method thatsuch,Find

hhhhQVp u

hKhhhhhK

hhhhhhhhhhhh

p

qbpbsaa

,

,,,,,,,

uwwu

uvvuvuwvwu

KhhKKhhhhh q vuvwwv ,

hhhh QVq ,for v

24,

2min

2

K

h

K

K

hh

w

Kh

Kh

Kh

hw

w

,12

min22

KhK ofdiameterais

Stabilized Parameter

hK

KhhhhhKhqvwwvfvf ,

~,

~

1

Domain Decomposition Method

b

i

b

i

bbbi

ibii

f

f

a

a

KK

KK

faK

12

2

1

D

1 2

Stabilized Finite Element Method

Decomposition

i : corresponding to Inner DOF

b : corresponding to Interface DOF

Inner DOF

Solver by Skyline Method

bibiiii aKfaK

Interface DOF

iiibibbibiibibb fKKfaKKKK 11 )(

Solver by BiCGSTAB or GPBiCG

χS

BiCGSTAB for the Interface Problem

end

,),(

),(

,

,

,),(

),(

,

,),(

),(

),(

begin

:dountil,,for

.set,,guessinitialanis

)()(

)()(

)(

)()(

)()()()(

)()()()()()(

)()(

)()()(

)()()()(

)()(

)()()(

)()()()()()(

)()(

)()()()(

k

k

k

kk

kkkk

kkkkkk

kk

kkk

kkkk

k

kk

kkkkkk

k

gg

gg

Sttg

tw

StSt

tSt

Swgt

Swg

gg

Swwgw

Errggk

Sλg

0

10

1

1

0

0

1111

0

1000

10

0

ς

ργ

ς

ςρλλ

ς

ρ

ρ

ςγ

γχλ

t

b

i

t

b

i

btbbbi

itibii

f

f

f

a

a

a

E

KKK

KKK

00

,χbSa

,)(

),(11

1

titiibibtiiibib

ibiibibb

aKKKKfKKf

KKKKS

χ

Equations on the interface

;)0()0(i

T

tbiitibii faaaKKK

;)0()0()0()0(b

T

tbibtbbbi faaaKKKwg

BiCGSTAB (1) Initialization

(a) Set   .

(b) Solve .  

(c) Solve .  

)0(ba

)0(ia

)0()0( , wg

(2)     Iteration(a) Solve .

 

(b) Solve .  

(c) Compute .

;

;),(

),(

)()()()(

)()0(

)()0()(

kkkk

k

kk

Swgt

Swg

gg

;00)()( Tkk

itibii wvKKK

;0)()()( Tkkbtbbbi

k wvKKKSw

)(kv

)(kSw

)()( , kk t

;

;

;),(

),(

)()()()1(

)()()()()()1(

)()(

)()()(

kkkk

kkkkkb

kb

kk

kkk

Sttg

twaa

StSt

tSt

;00)()( Tkk

itibii tvKKK

;0)()()( Tkkbtbbbi

k tvKKKSt

(d) Solve .

(e) Solve .

(f) Compute .

)(kv

)(kSt

)1()1()( ,, kkb

k ga

(g) Convergence check for . If converged

, If not converged go to (h) .

(h) Compue .

(3)     Construction of solution .  (a) Solve .

);(

;),(

),(

)()()()()1()1(

)()0(

)1()0(

)(

)()(

kkkkkk

k

k

k

kk

Swwgw

gg

gg

;**i

T

tbiitibii faaaKKK

)1( kg)1(* k

bb aa

)1()( , kk w

*ia

Preconditioned BiCGSTAB for the Interface Problem

end

,),(

),(

,

,

,),(

),(

,

,),(

),(

),(

begin

:dountil,,for

,set,,guessinitialanis

)()(

)()(

)(

)()(

)()()()(

)()()()()()(

)()(

)()()(

)()()()(

)()(

)()()(

)()()()()()(

)()(

)()()()(

k

k

k

kk

kkkk

kkkkkk

kk

kkk

kkkk

k

kk

kkkkkk

k

gg

gg

tSMtg

tMwM

tSMtSM

ttSM

wSMgt

wSMg

gg

wSMwgw

Errggk

Sλg

0

10

11

111

11

1

1

10

0

11111

0

1000

10

0

ς

ργ

ς

ςρλλ

ς

ρ

ρ

ςγ

γχλ

GPBiCG for the Interface Problem (1/2)

) ,),(

),( then , if(

,),)(,(),)(,(

),)(,(),)(,(

,),)(,(),)(,(

),)(,(),)(,(

,

,

,),(

),(

),(

begin

:dountil,,for

,,0set,χ,guessinitialanisλ

)()()(

)()()(

)()()()()()()()(

)()()()()()()()()(

)()()()()()()()(

)()()()()()()()()(

)()()()(

)()()()()()()(

)()(

)()()(

)()()()()(

)()(

)()()()()()(

00

10

0

11

0

0

111

0

111000

kkk

kkk

kkkkkkkk

kkkkkkkkk

kkkkkkkk

kkkkkkkkk

kkkk

kkkkkkk

k

kk

kkkkk

k

StSt

tStk

yStStyyyStSt

tStStytyStSt

yStStyyyStSt

ySttytStyy

Spgt

Spwgty

Spg

gg

upgp

Errggk

wtSλg

ης

η

ς

α

αα

α

β

β

GPBiCG for the Interface Problem (2/2)

end

,

,),(

),(

,

,λλ

,

),(

)()()()(

)()(

)()(

)(

)()(

)()()()()()(

)()()()()(

)()()()()()()(

)()()()()()()()(

kkkk

k

k

k

kk

kkkkkk

kkkkk

kkkkkkk

kkkkkkkk

SpStw

gg

gg

Stytg

zp

uzgz

ugtSpu

β

ς

αβ

ςη

α

αης

βης

0

10

1

1

1

111

t

b

i

t

b

i

btbbbi

itibii

f

f

f

a

a

a

E

KKK

KKK

00

,χbSa

,)(

),(11

1

titiibibtiiibib

ibiibibb

aKKKKfKKf

KKKKS

χ

Equations on the interface

;)()(i

Ttbiitibii faaaKKK 00

;

;

)()(

)()()(

00

000

gp

faaaKKKg bT

tbibtbbbi

GPBiCG(1) Initialization

(a) Set .

(b) Solve .  

(c) Set and .  

)(0ba

)(0ia

)(0g )(0p

(2)     Iteration(a) Solve .

 

(b) Set .  

(c) Compute .

;)()( 00 Tkk

itibii pvKKK

;)()()( Tkkbtbbbi

k pvKKKSp 0

)(kv

)(kSp

)()()( ,, kkk tyα

,

,

,),(

),(

)()()()(

)()()()()()()(

)()(

)()()(

kkkk

kkkkkkk

k

kk

Spgt

Spwgty

Spg

gg

α

αα

α

11

0

0

;00)()( Tkk

itibii tvKKK

;0)()()( Tkkbtbbbi

k tvKKKSt

(d) Solve .

(e) Set .

(f) Compute .

)(kv

)(kSt

)()( , kk ης

) ,),(

),( then , if(

,),)(,(),)(,(

),)(,(),)(,(

,),)(,(),)(,(

),)(,(),)(,(

)()()(

)()()(

)()()()()()()()(

)()()()()()()()()(

)()()()()()()()(

)()()()()()()()()(

00

kkk

kkk

kkkkkkkk

kkkkkkkkk

kkkkkkkk

kkkkkkkkk

StSt

tStk

yStStyyyStSt

tStStytyStSt

yStStyyyStSt

ySttytStyy

ης

η

ς

(g) Compute .)()()( ,, 1kkk gzu

,

,

),(

)()()()()()(

)()()()()()()(

)()()()()()()()(

kkkkkk

kkkkkkk

kkkkkkkk

Stytg

uzgz

ugtSpu

ςη

αης

βης

1

1

111

(h) Convergence check for . If converged

If not converged go to (h) .

(i) Compute .

(3)     Construction of solution .  (a) Solve .

;**i

T

tbiitibii faaaKKK

)1( kg

)1()()( ,, kkk pw

*ia

),(

,

,),(

),(

)()()()()(

)()()()(

)()(

)()(

)(

)()(

kkkkk

kkkk

k

k

k

kk

upgp

SpStw

gg

gg

β

β

ς

αβ

11

0

10

,λλ )()()()()(* kkkkkb zpa α1

Preconditioned GPBiCG for the Interface Problem (1/2)

) ,),(

),( then , if(

,),)(,(),)(,(

),)(,(),)(,(

,),)(,(),)(,(

),)(,(),)(,(

,

,

,

,),(

),(

),(

begin

:dountil,,for

,,0set,χλ,guessinitialanisλ

)()()(

)()()(

)()()()()()()()(

)()()()()()()()()(

)()()()()()()()(

)()()()()()()()()(

)()()()(

)()()()(

)()()()()()()(

)()(

)()()(

)()()()()(

)()(

)()()()()()(

00

10

0

11

1

1111

1111

1111

11

111

11

0

0

1111

0

111000

kkk

kkk

kkkkkkkk

kkkkkkkkk

kkkkkkkk

kkkkkkkkk

kkkk

kkkk

kkkkkkk

k

kk

kkkkk

k

tSMtSM

ttSMk

ytSMtSMyyytSMtSM

ttSMtSMytytSMtSM

ytSMtSMyyytSMtSM

ytSMtyttSMyy

SpMgMtM

Spgt

Spwgty

Spg

gg

upgMp

Errggk

wtSg

ης

η

ς

α

α

αα

α

β

β

Preconditioned GPBiCG for the Interface Problem (2/2)

end

,

,),(

),(

,

,

,

),(

)()()()(

)()(

)()(

)(

)()(

)()()()()()(

)()()()()(

)()()()()()()(

)()()()()()()()(

kkkk

k

k

k

kk

kkkkkk

kkkkk

kkkkkkk

kkkkkkkk

SptSMw

gg

gg

tSMytg

zpλλ

uzgMz

ugMtMSpMu

β

ς

αβ

ςη

α

αης

βης

1

0

10

11

1

11

111111

One More Analysis of Subdomains

Output Results

Read Data

Analyze Analyze Analyze

Converged?

Change B.C.

Yes

No

System Flowchart

Skyline Method

BiCGSTAB Method

Newton Method

Whole domain

Parts

Subdomains

HDDM Parents only

ParentDiskPart_1

Part_n

Part_2

AdvTetMesh

AdvBCtool

AdvsFlow

AdvMetis

AdvVisual

AdvCAD

AdvTriPatch

CommercialCAD ・・・

Configure・・・ Patch

・・・ Mesh

・・・ Boundary Cond. ・・・ DD (-difn 4)

・・・ Flow Analysis・・・Visualization

Adventure System

.05.0,5.0,5.0

:FEM

,0,0,0

,0

,1,0

,1,0

,0,0,1,1

321

3

22

11

3

pxxx

x

xx

xx

x

D

D

1.0

1.0

0.0

1.0

1x

3x

2x

Boundary Conditions

Numerical Examples(The Cavity Flow Problem )

(8 parts, 8*125 subdomains)

Total DOF : 1,000,188Interface DOF : 384,817

About 1,000 DOF/ subdomain 8 processors for parents

Domain Decomposition

Precond. : Diagonal Scaling ( Abs. )6-1.0E

)0()0()()(

ggnk

Criterion :

1.00E- 07

1.00E- 06

1.00E- 05

1.00E- 04

1.00E- 03

1.00E- 02

1.00E- 01

1.00E+00

1.00E+01

1.00E+02

0 500 1000 1500 2000 2500 3000

反復回数

相対

残差

1回目 2回目 3回目 4回目 5回目

一回の反復が約 5 秒弱

Convergence of BiCGSTAB

収束履歴( Newton 法)

Initial Value : Sol.of Stokes

Criterion : 4E0.1)0()()1(

uuu nn

Iteration counts of Newton method

1.00E- 06

1.00E- 05

1.00E- 04

1.00E- 03

1.00E- 02

1.00E- 01

1.00E+000 1 2 3 4 5

反復回数

相対

変化

(Nonlinear Convergence )

Velocity Vectors

Visualization of AVS

Pressure Contour

x2 = 0.5

1.00E- 07

1.00E- 06

1.00E- 05

1.00E- 04

1.00E- 03

1.00E- 02

1.00E- 01

1.00E+00

1.00E+01

0 100 200 300 400 500 600

反復回数

相対

残差

1回目 2回目 3回目 4回目 5回目

Precod. : Diagonal Scaling ( with sign )6-1.0E

)0()0()()(

ggnk

Criterion :

一回の反復が約 5.5 秒弱

Convergence of GPBiCG

Initial : Sol. of Stokes

Criterion : 4E0.1)0()()1(

uuu nn

Iteretion counts of Newton method

収束履歴( Newton 法)

1.00E- 06

1.00E- 05

1.00E- 04

1.00E- 03

1.00E- 02

1.00E- 01

1.00E+000 1 2 3 4 5

反復回数

相対

変化

x1 component of the velocity

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-0.3 -0.1 0.1 0.3 0.5 0.7 0.9

BiCGSTAB GP-BiCG

9 hours (BiCGSTAB)→   1 hour 40 min.(GPBiCG)

GPBiCG is a liitle faster than BiCGSTAB for small problems.

High Reynolds number problems are not solved.

Strong preconditioners may be required.

( 2 parts , 2*75 subdomains, ≒800 DOF/subdomain )

Total DOF : 119,164Interface DOF : 42,417

Domain Decomposition

Initial : Sol. of Stokes

Criterion : 4E0.1)0()()1(

uuu nn

Iteration counts of Newton method

収束履歴( Newton 法)

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+000 1 2 3 4 5

反復回数

相対

変化

HDDM FEM

FEM

Velocity vectors and pressure at x2 = 0.5

HDDM

x1-velocity component

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-0.3 -0.1 0.1 0.3 0.5 0.7 0.9

x1方向の流速

x 3座

Ghia 1000188dof(HDDM) 119164dof(HDDM) 119164dof(FEM)

DDM ( 1 ) No. of Subdomins   64    No. of Nodes 9261    No. of DOF 37044    No. of Interface DOF 11718

DDM ( 2 ) No. of Subdomains   125    No. of Nodes 9261    No. of DOF 37044    No. of Interface DOF 14800

Computinal Conditions

DDM(1) DDM(2)

Mesh

The Vector Diagram and the Pressure Contour-Line on x2 = 0.5 ( Re:100 ) DDM(1) DDM(2) FEM

Comparison of the Velocity ( Re:100 )

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-0.2 0 0.2 0.4 0.6 0.8 1

x1 component of velocity

x 3

DDM(1) DDM(2) FEM

Relative Residual History of Newton Method ( Re:100 )

1.00E-09

1.00E-08

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-030 1 2 3 4

No. of Iterations

Re

lati

ve R

esi

du

al

DDM(1) DDM(2) FEM

DDM(1) DDM(2) FEM

The Vector Diagram and the Pressure Contour-Line on x2 = 0.5 ( Re:1000 )

Comparison of the Velocity ( Re:1000 )

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-0.2 0 0.2 0.4 0.6 0.8 1

x1 component of velocity

x 3

DDM(1) DDM(2) FEM

Relative Residual History of Newton Method ( Re:1000 )

1.00E-08

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-030 1 2 3 4 5 6

No. of Iterations

Re

lati

ve R

esi

du

al

DDM(1) DDM(2) FEM

A subway station model

Constant flows

the natural boundary condition

Computational Conditions

)100(30Alpha21264

49)cos](/[1.0

)]([0.1)]([24Re

664,943,12

916,235,3

133,873,18

2

hourstimenalcomputatio

ityviskinematicsm

velocitysmlengthm

DOF

Nodes

ElementsofNumber

Convergence Criteria

5)0(

2

)0()(

2

)( 100.1 ggnk

Convergence of Newton method

4)1()()1( 100.1

nnn aaa

Convergence of the interface problem with GPBiCG method

Initial values of the interface problemwith GPBiCG method

0

0,0,0

pu

The solution of the previous step

• 0 step of Newton method

• other steps of Newton method

Convergence of GPBiCG

Nonlinear Convergence(Newton Method)

Visualization by AVS (Velocity)

Visualization by AVS (Pressure)

Conclusion

  

Future Works

A HDDM computing system for

stationary Navier-Stokes problems

has been developed and applied to

1- 10 million problems successfully.

More larger scale analysis based on

strong preconditioners and applications to high

Reynolds number problems and coupled problems