Spin superfluidity and magnon Bose – Einstein condensation MicroKelvin, 2013 Yuriy Bunkov...

Post on 31-Mar-2015

217 views 1 download

Transcript of Spin superfluidity and magnon Bose – Einstein condensation MicroKelvin, 2013 Yuriy Bunkov...

Spin superfluidity and magnon Bose – Spin superfluidity and magnon Bose – Einstein condensationEinstein condensation

MicroKelvin, 2013

Yuriy BunkovYuriy BunkovInstitute Neel, CNRS, Grenoble, FranceInstitute Neel, CNRS, Grenoble, France

1. Review of Magnon BEC

2. Saga de Persistent signal

1. Field induced magnetic phase transition as a magnon Bose Einstein condensation

No, System in thermal equilibrium can not create the BEC state

2. Magnetic transport in a superfluid vacuum

No, This is the property of vacuum, the superfluid state of 3He.It is a property of texture, not particles.

What we will not speak about:

And we will speak about of magnonsBEC and magnons spin supercurrent, notDirectly connected with mass superfluidity

Superfluid 3HeQuantum vacuumcharacterized by

phase S (magnetization) L (orbital momentum)

Quasiparticles

Magnons

Acoustic modes

Topological defects:

Boojum

Vortex

Brane

Particles:

Fields:

Texture of orbital momentum

Holstain-Primakoff transformation

0

0.2

0.4

0.6

0.8

1

0

0.5

1

1.5

2

2.5

3

0 0.1 0.2 0.3 0.4 0.5Time, s.

Signal in the time domainA

B

0 100 200 300 400 500 600

0s.0.02s0.2s0.4s0.3s

Frequency shift, Hz.

Magnons destribution

0.03 s after the pulsebroadening 0.5 Hz

0.2 s after the pulsebroadening 2 Hz

0.3 s after the pulse( 2 Hz )

0.4 s after the pulse( 2 Hz )

Grenoble, 2003

Spin superfluidity and BEC of magnons was found in a 5 different states of superfluid 3He. In one of this states the induction signal can live more then one hours. Its corresponds to a 99.999% of magnons to be condensed! For an atomic BEC the 30% condensation was only achieved!

Magnon BEC Atomic BEC

Ideal gas

Quantum gas

BEC, superfluidity

Paramagnetic, Fermi liquid

Magnetically ordered

Coherent precession

H

H

H

Sx + iSy = S sin e it +i

=Hloc

=

2. Thermalized magnons = 0No BEC

1. Trap. It may be space trap (as for particle BEC) or even the trap of energy of magnons interactionH

S

2. Small angle of deflection

H

S

Not enough for BEC

For superfluid 3He critical angle is about 0.20

1. Trap. It may be space trap (as for particle BEC) or even the trap of energy of magnons interaction

2. Big angle of deflection H

SEnough for BEC but

Attractive interaction leads to instability of coherent precession. NO BEC

2. Big angle of deflection

1. Trap.

H

S

Repulsive interaction !BEC ?

May be NOT! If magnons live too short timeExample – stationary spin waves.

The important is the spontanuos simmetry breaking.How to check? 1.Long induction decay, longer then the inhomogeneity of magnetic field 2. Non-resonance excitation (In frequency or in place)

H

CW NMRrf

= 0

x

Hx

The magnetic relaxation leads to decrease of BEC region

Minimization of energy in the conditions of magnetization Conservation and the gradient of chemical potencial

It can be compensated by a small resonance RF pumping

HPD1

20

JETPh Letters, v.47, p.478, (1988).

JosephsonJosephson

HPD 2

HPD 2

AerogelStycast

F

P Hunger, Yu M Bunkov, E Collin, and H Godfrin Journal of Physics: Conference Series. 400 012019 (2012)

Superfluid 3He-A in squeezed aerogel

Hd

L

dL

-1

-0.8

-0.6

-0.4

-0.2

0

0 0.5 1 1.5 2

-Domega-Domega/2-Domega3/41/2sinb2Domega/4

Fd + F

=L

2/2L

= L - A ; A=1

A=3/4

A=1/2

A=1/4

A=0

2

In rotating frame

0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1

Excit=0.1VExcit=0.5VExcit=1.5VExcit=3.0VExcit=4.0VamplSignal

f [kHz]

Am

plit

ud

e (M

)

ba

edc

P. Hunger, Y. M. Bunkov, E. Collin and H. Godfrin« Evidence for Magnon BEC in Superfluid 3He-A »J. of  Low Temp. Phys 158, 129–134 (2010)

T. Kunimatsu, T. Sato, K. Izumina, A. Matsubara,Y. Sasaki, M. Kubota, O. Ishikawa, T. Mizusaki, Yu.M.Bunkov JETP Letters, 86, 244 (2007)

0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1

Excit=0.1VExcit=0.5VExcit=1.5VExcit=3.0VExcit=4.0VamplSignal

f [kHz]

Am

plit

ud

e (M

)b

aedc

CsMnF33He-A in aerogel

CW NMR experiments

-1

-0,5

0

0,5

1

0 30 60 90 120 150 180

Frqlo

Angle

Yu. M. Bunkov, E. M. Alakshin, R. R. Gazizulin, A.V. Klochkov, V.V. Kuzmin, V.S. L'vov, and M.S. Tagirov. “High Tc spin superfluidity in antiferromagnets”, Phys. Rev. Lett. 108, 177002 (2012).

RbMnF3 and MnCO3 OIST 2013

RbMnF3

MnCO3

Theoretical prediction for saturation

Magnon BEC

Saga de Persistent signal

Persistent Signal; Coherent NMR state

assisted by orbital texture. Yuriy M. Bunko

C R T B T – C N R S, Grenoble, France

QFS Trento 2004

HPD

Catastropha

PSPS

Grenoble, 1999

A.S.Borovik-Romanov, Yu.M.Bunkov, V.V.Dmitriev, Yu.M.Mukharskiy, JETP Letters v.40, p.1033, (1984). Sov.Phys.JETPh, v.61, p.1199, (1985). I.A.Fomin, JETP Letters v.40, p.1036, (1984).

Coherent, Magnetically Excited States

Domain with Homogeneous Precession of Magnetization, 1984

Catastrophic relaxation

Yu.M.Bunkov, V.V.Dmitriev, Yu.M.Mukharskiy, J.Nyeki, D.A.Sergatskov, Europhysics Letters, v.8, p.645, (1989).

2. Coherenent State, which radiates the Persistent signal

Moscow resultsYu.M.Bunkov, S.N.Fisher, A.M.Guenault, G.R.Pickett, S.R.Zakazov, Physica B, v. 194, p. 827, (1994).

Discovery, Lancaster, 1992Yu.M.Bunkov, S.N.Fisher, A.M.Guenault, G.R.Pickett, Phys, Rev, Letters, v.69, p3092, (1992).

``Coherent Spin Precession and Texture in 3He-B.''Yu.M. Bunkov, LT-21, Czechoslovak Journal of Phys. V. 46, S1, p. 231 (1996).

Lancaster experimental conformationYu.M. Bunkov, D.J. Cousins, M.P.Enrico, S.N.Fisher, G.R.Pickett, N.S.Shaw, W.Tych, LT-21, Czechoslovak Journal of Phys. V. 46, S1, p. 233 (1996).

Moscow

Lancaster

Non-linear Stationary Spin Waves in Flared out texture

NMR of Rotated superfluid 3He-B O.T.Ikkala, G.E.Volovik, P.Y.Hakonen,

Yu.M.Bunkov, S.T.Islander, G.A.Haradze, JETP Letters v.35, p.416 (1982).

LA

ng

le L

-H

Before rotation During rotation After rotation

H

Grenoble experiments with Non-linear Stationary Spin Waves

0.25 Tc

A.-S. Chen, Yu.M. Bunkov, H. Godfrin, R. Schanen, F. Scheffer. J. Low Temp. Phys, 110, p. 51, (1998).

Following Landau and Lifchitz we consider an anharmonic oscillator with a third order of nonlinearity

Non-linear Stationary Spin-waves

A.S. Chen,Yu. M. Bunkov, H. Godfrin, R. Schanen and F. Scheffler J. of Low Temp. Phys. 113, 693 (1998).

H H

H

=H+ Hz

Quantum billiard

Anne-Sophie CHEN, Ph D Thesis, Grenoble, (1999)

Identity of Non-linear SSW and Persistent Signals

Grenoble, 1997. A.-S. Chen, Yu.M. Bunkov, H. Godfrin, R. Schanen, F. Scheffer. J. Low Temp. Phys, 110, p. 51, (1998).

0

20

40

60

80

100

0 10 20 30 40 50Position in the cell

S

L H H

Computer simulationGrenoble 2004

H

Lz

LH

z

Calculations of a spatial deflection of spin and orbit on basis of Poisson brackets and Takagi relaxation

Follow Voislav Golo algorithm

Yu.M.Bunkov, V.L.Golo, J Low Temp Phys, to be published

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50

N9500RM.BH

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50

N9400RM.BH

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50

N9300RM.BH

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50

N9200RM.BH

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50

Grenoble, 2004

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50

Grenoble, 2004

96

98

100

102

104

106

108

110

112

0 10 20 30 40 50

Oscillations

Position in the cell, mm

S

L

n

L=R(n) S

1% HPD

Grenoble, 1999Off-resonante NMR excitation

D.J.Cousins, S.N.Fisher, A.I.Gregory, G.R.Pickett, N.S.Shaw, Phys. Rev. Lett, 82, 4484, (1999)

Anne-Sophie CHEN, Ph D Thesis, Grenoble, (1999)

s

pd

rf

rf

Qb

dd