Special Limits - homepages.math.uic.edurmlowman/math165/LectureNotes/L4-W2L1speciallimits.pdfSpecial...

Post on 20-Jan-2020

16 views 0 download

Transcript of Special Limits - homepages.math.uic.edurmlowman/math165/LectureNotes/L4-W2L1speciallimits.pdfSpecial...

Special Limitsdefinition of e

The number e is defined as a limit. Here is one definition:

e = limx→0+

(1 + x)1x

A good way to evaluate this limit is make a table of numbers.x .1 .01 0.001 0.0001 0.00001 → 0

(1 + x)1x 2.5937 2.70481 2.71692 2.71814 2.71826 → e

Where e = 2.7 1828 1828 · · ·This limit will give the same result:

e = limx→∞

(1 +

1

x

)x

Special Limitsdefinition of e

The number e is defined as a limit. Here is one definition:

e = limx→0+

(1 + x)1x

A good way to evaluate this limit is make a table of numbers.

x .1 .01 0.001 0.0001 0.00001 → 0

(1 + x)1x 2.5937 2.70481 2.71692 2.71814 2.71826 → e

Where e = 2.7 1828 1828 · · ·This limit will give the same result:

e = limx→∞

(1 +

1

x

)x

Special Limitsdefinition of e

The number e is defined as a limit. Here is one definition:

e = limx→0+

(1 + x)1x

A good way to evaluate this limit is make a table of numbers.x .1 .01 0.001 0.0001 0.00001 → 0

(1 + x)1x

2.5937 2.70481 2.71692 2.71814 2.71826 → e

Where e = 2.7 1828 1828 · · ·This limit will give the same result:

e = limx→∞

(1 +

1

x

)x

Special Limitsdefinition of e

The number e is defined as a limit. Here is one definition:

e = limx→0+

(1 + x)1x

A good way to evaluate this limit is make a table of numbers.x .1 .01 0.001 0.0001 0.00001 → 0

(1 + x)1x 2.5937

2.70481 2.71692 2.71814 2.71826 → e

Where e = 2.7 1828 1828 · · ·This limit will give the same result:

e = limx→∞

(1 +

1

x

)x

Special Limitsdefinition of e

The number e is defined as a limit. Here is one definition:

e = limx→0+

(1 + x)1x

A good way to evaluate this limit is make a table of numbers.x .1 .01 0.001 0.0001 0.00001 → 0

(1 + x)1x 2.5937 2.70481

2.71692 2.71814 2.71826 → e

Where e = 2.7 1828 1828 · · ·This limit will give the same result:

e = limx→∞

(1 +

1

x

)x

Special Limitsdefinition of e

The number e is defined as a limit. Here is one definition:

e = limx→0+

(1 + x)1x

A good way to evaluate this limit is make a table of numbers.x .1 .01 0.001 0.0001 0.00001 → 0

(1 + x)1x 2.5937 2.70481 2.71692

2.71814 2.71826 → e

Where e = 2.7 1828 1828 · · ·This limit will give the same result:

e = limx→∞

(1 +

1

x

)x

Special Limitsdefinition of e

The number e is defined as a limit. Here is one definition:

e = limx→0+

(1 + x)1x

A good way to evaluate this limit is make a table of numbers.x .1 .01 0.001 0.0001 0.00001 → 0

(1 + x)1x 2.5937 2.70481 2.71692 2.71814

2.71826 → e

Where e = 2.7 1828 1828 · · ·This limit will give the same result:

e = limx→∞

(1 +

1

x

)x

Special Limitsdefinition of e

The number e is defined as a limit. Here is one definition:

e = limx→0+

(1 + x)1x

A good way to evaluate this limit is make a table of numbers.x .1 .01 0.001 0.0001 0.00001 → 0

(1 + x)1x 2.5937 2.70481 2.71692 2.71814 2.71826

→ e

Where e = 2.7 1828 1828 · · ·This limit will give the same result:

e = limx→∞

(1 +

1

x

)x

Special Limitsdefinition of e

The number e is defined as a limit. Here is one definition:

e = limx→0+

(1 + x)1x

A good way to evaluate this limit is make a table of numbers.x .1 .01 0.001 0.0001 0.00001 → 0

(1 + x)1x 2.5937 2.70481 2.71692 2.71814 2.71826 → e

Where e = 2.7 1828 1828 · · ·

This limit will give the same result:

e = limx→∞

(1 +

1

x

)x

Special Limitsdefinition of e

The number e is defined as a limit. Here is one definition:

e = limx→0+

(1 + x)1x

A good way to evaluate this limit is make a table of numbers.x .1 .01 0.001 0.0001 0.00001 → 0

(1 + x)1x 2.5937 2.70481 2.71692 2.71814 2.71826 → e

Where e = 2.7 1828 1828 · · ·This limit will give the same result:

e = limx→∞

(1 +

1

x

)x

Special Limitsalternate definition of e

Here is an equivalient definition for e:

e = limx→∞

(1 +

1

x

)x

x 100 1000 10000 1000000 →∞(1 + x)

1x 2.70481 2.71692 2.71815 2.71827 → e

Note thatlimx→0

f(x)

is the same as

limx→∞

f

(1

x

)

Special Limitsalternate definition of e

Here is an equivalient definition for e:

e = limx→∞

(1 +

1

x

)x

x 100 1000 10000 1000000 →∞(1 + x)

1x

2.70481 2.71692 2.71815 2.71827 → e

Note thatlimx→0

f(x)

is the same as

limx→∞

f

(1

x

)

Special Limitsalternate definition of e

Here is an equivalient definition for e:

e = limx→∞

(1 +

1

x

)x

x 100 1000 10000 1000000 →∞(1 + x)

1x 2.70481

2.71692 2.71815 2.71827 → e

Note thatlimx→0

f(x)

is the same as

limx→∞

f

(1

x

)

Special Limitsalternate definition of e

Here is an equivalient definition for e:

e = limx→∞

(1 +

1

x

)x

x 100 1000 10000 1000000 →∞(1 + x)

1x 2.70481 2.71692

2.71815 2.71827 → e

Note thatlimx→0

f(x)

is the same as

limx→∞

f

(1

x

)

Special Limitsalternate definition of e

Here is an equivalient definition for e:

e = limx→∞

(1 +

1

x

)x

x 100 1000 10000 1000000 →∞(1 + x)

1x 2.70481 2.71692 2.71815

2.71827 → e

Note thatlimx→0

f(x)

is the same as

limx→∞

f

(1

x

)

Special Limitsalternate definition of e

Here is an equivalient definition for e:

e = limx→∞

(1 +

1

x

)x

x 100 1000 10000 1000000 →∞(1 + x)

1x 2.70481 2.71692 2.71815 2.71827

→ e

Note thatlimx→0

f(x)

is the same as

limx→∞

f

(1

x

)

Special Limitsalternate definition of e

Here is an equivalient definition for e:

e = limx→∞

(1 +

1

x

)x

x 100 1000 10000 1000000 →∞(1 + x)

1x 2.70481 2.71692 2.71815 2.71827 → e

Note thatlimx→0

f(x)

is the same as

limx→∞

f

(1

x

)

Special Limitsalternate definition of e

Here is an equivalient definition for e:

e = limx→∞

(1 +

1

x

)x

x 100 1000 10000 1000000 →∞(1 + x)

1x 2.70481 2.71692 2.71815 2.71827 → e

Note thatlimx→0

f(x)

is the same as

limx→∞

f

(1

x

)

Special Limitsalternate definition of e

Here is an equivalient definition for e:

e = limx→∞

(1 +

1

x

)x

x 100 1000 10000 1000000 →∞(1 + x)

1x 2.70481 2.71692 2.71815 2.71827 → e

Note thatlimx→0

f(x)

is the same as

limx→∞

f

(1

x

)

Special Limitse the natural base

I the number e is the natural base in calculus. Manyexpressions in calculus are simpler in base e than in otherbases like base 2 or base 10

I e = 2.71828182845904509080 · · ·I e is a number between 2 and 3. A little closer to 3.

I e is easy to remember to 9 decimal places because 1828repeats twice: e = 2.718281828. For this reason, do not use2.7 to extimate e.

I use the ex button on your calculator to find e. Use 1 for x.

I example: F = Pert is often used for calculating compoundinterest in business applications.

Special Limitse the natural base

I the number e is the natural base in calculus. Manyexpressions in calculus are simpler in base e than in otherbases like base 2 or base 10

I e = 2.71828182845904509080 · · ·

I e is a number between 2 and 3. A little closer to 3.

I e is easy to remember to 9 decimal places because 1828repeats twice: e = 2.718281828. For this reason, do not use2.7 to extimate e.

I use the ex button on your calculator to find e. Use 1 for x.

I example: F = Pert is often used for calculating compoundinterest in business applications.

Special Limitse the natural base

I the number e is the natural base in calculus. Manyexpressions in calculus are simpler in base e than in otherbases like base 2 or base 10

I e = 2.71828182845904509080 · · ·I e is a number between 2 and 3. A little closer to 3.

I e is easy to remember to 9 decimal places because 1828repeats twice: e = 2.718281828. For this reason, do not use2.7 to extimate e.

I use the ex button on your calculator to find e. Use 1 for x.

I example: F = Pert is often used for calculating compoundinterest in business applications.

Special Limitse the natural base

I the number e is the natural base in calculus. Manyexpressions in calculus are simpler in base e than in otherbases like base 2 or base 10

I e = 2.71828182845904509080 · · ·I e is a number between 2 and 3. A little closer to 3.

I e is easy to remember to 9 decimal places because 1828repeats twice: e = 2.718281828. For this reason, do not use2.7 to extimate e.

I use the ex button on your calculator to find e. Use 1 for x.

I example: F = Pert is often used for calculating compoundinterest in business applications.

Special Limitse the natural base

I the number e is the natural base in calculus. Manyexpressions in calculus are simpler in base e than in otherbases like base 2 or base 10

I e = 2.71828182845904509080 · · ·I e is a number between 2 and 3. A little closer to 3.

I e is easy to remember to 9 decimal places because 1828repeats twice: e = 2.718281828. For this reason, do not use2.7 to extimate e.

I use the ex button on your calculator to find e. Use 1 for x.

I example: F = Pert is often used for calculating compoundinterest in business applications.

Special Limitse the natural base

I the number e is the natural base in calculus. Manyexpressions in calculus are simpler in base e than in otherbases like base 2 or base 10

I e = 2.71828182845904509080 · · ·I e is a number between 2 and 3. A little closer to 3.

I e is easy to remember to 9 decimal places because 1828repeats twice: e = 2.718281828. For this reason, do not use2.7 to extimate e.

I use the ex button on your calculator to find e. Use 1 for x.

I example: F = Pert is often used for calculating compoundinterest in business applications.

Special Limitsf(x) = 1

x

Here are four useful limits:

I

limx→+∞

1

x→ 0+ = 0

I

limx→−∞

1

x→ 0− = 0

I

limx→0+

1

x→ +∞

I

limx→0−

1

x→ −∞

Special Limitsf(x) = 1

x

Here are four useful limits:

I

limx→+∞

1

x→ 0+ = 0

I

limx→−∞

1

x→ 0− = 0

I

limx→0+

1

x→ +∞

I

limx→0−

1

x→ −∞

Special Limitsf(x) = 1

x

Here are four useful limits:

I

limx→+∞

1

x→ 0+ = 0

I

limx→−∞

1

x→ 0− = 0

I

limx→0+

1

x→ +∞

I

limx→0−

1

x→ −∞

Special Limitsf(x) = 1

x

Here are four useful limits:

I

limx→+∞

1

x→ 0+ = 0

I

limx→−∞

1

x→ 0− = 0

I

limx→0+

1

x→ +∞

I

limx→0−

1

x→ −∞

Special Limitsf(x) = 1

x cont.

The general idea is this:

I1

+BIG→ +small

I1

−BIG→ −small

I1

+small→ +BIG

I1

−small→ −BIG

Special Limitsf(x) = 1

x cont.

The general idea is this:

I1

+BIG→ +small

I1

−BIG→ −small

I1

+small→ +BIG

I1

−small→ −BIG

Special Limitsf(x) = 1

x cont.

The general idea is this:

I1

+BIG→ +small

I1

−BIG→ −small

I1

+small→ +BIG

I1

−small→ −BIG

Special Limitsf(x) = 1

x cont.

The general idea is this:

I1

+BIG→ +small

I1

−BIG→ −small

I1

+small→ +BIG

I1

−small→ −BIG

Special Limitsf(x) = 1

x

x

f

+1.0 +2.5 +4.0 +5.5 +7.0 +8.5−1.0−2.5−4.0−5.5−7.0−8.5

−9.0

−8.0

−7.0

−6.0

−5.0

−4.0

−3.0

−2.0

−1.0

+1.0

+2.0

+3.0

+4.0

+5.0

+6.0

+7.0

+8.0

+9.0

Special Limits1

BIG = small, 1small = BIG

Look at 1x using some numbers:

x 10 100 1000 10000 100000 → +∞f(x) = 1

x .1 .01 .001 .0001 .00001 → 0+

x -10 -100 -1000 -10000 -100000 → −∞f(x) = 1

x -.1 -.01 -.001 -.0001 -.00001 → −0+

x .1 .01 .001 .0001 .00001 → +0

f(x) = 1x 10 100 1000 10000 100000 → +∞

x -.1 -.01 -.001 -.0001 -.00001 → −0

f(x) = 1x -10 -100 -1000 -10000 -100000 → −∞

Special Limitsx→ ±∞ for Polynomials

I when taking limits of polynomials to ±∞ drop the lowerdegree terms and only keep the higest degree term of of thepolymomial.

I this is an intermediate step in taking the limit. Use algebra tosimplify the expression at this step then continue to work onfinding the limit to infinity.

I this works because for large values of x the highest powerterm of the polynomial is so much larger that all of thesmaller degree terms that the smaller degree terms have noeffect in the limit to infinity.

Special Limitsx→ ±∞ for Polynomials

I when taking limits of polynomials to ±∞ drop the lowerdegree terms and only keep the higest degree term of of thepolymomial.

I this is an intermediate step in taking the limit. Use algebra tosimplify the expression at this step then continue to work onfinding the limit to infinity.

I this works because for large values of x the highest powerterm of the polynomial is so much larger that all of thesmaller degree terms that the smaller degree terms have noeffect in the limit to infinity.

Special Limitsx→ ±∞ for Polynomials

I when taking limits of polynomials to ±∞ drop the lowerdegree terms and only keep the higest degree term of of thepolymomial.

I this is an intermediate step in taking the limit. Use algebra tosimplify the expression at this step then continue to work onfinding the limit to infinity.

I this works because for large values of x the highest powerterm of the polynomial is so much larger that all of thesmaller degree terms that the smaller degree terms have noeffect in the limit to infinity.

Special Limitsexamples of x→ ±∞ for Polynomials

I limx→+∞2x3+99x+1000

1+2x2+4x3

= limx→+∞2x3

4x3 = limx→+∞24 =

limx→+∞12 = 1

2

Special Limitsexamples of x→ ±∞ for Polynomials

I limx→+∞2x3+99x+1000

1+2x2+4x3

= limx→+∞2x3

4x3 = limx→+∞24 =

limx→+∞12 = 1

2

Special Limitsexamples of x→ ±∞ for Polynomials

I limx→+∞2x3+99x+1000

1+2x2+4x3 = limx→+∞2x3

4x3

= limx→+∞24 =

limx→+∞12 = 1

2

Special Limitsexamples of x→ ±∞ for Polynomials

I limx→+∞2x3+99x+1000

1+2x2+4x3 = limx→+∞2x3

4x3 = limx→+∞24

=

limx→+∞12 = 1

2

Special Limitsexamples of x→ ±∞ for Polynomials

I limx→+∞2x3+99x+1000

1+2x2+4x3 = limx→+∞2x3

4x3 = limx→+∞24 =

limx→+∞12

= 12

Special Limitsexamples of x→ ±∞ for Polynomials

I limx→+∞2x3+99x+1000

1+2x2+4x3 = limx→+∞2x3

4x3 = limx→+∞24 =

limx→+∞12 = 1

2

Special Limitsexample of x→ ±∞ for Polynomials

limx→+∞2x3+99x+1000

1+2x2+4x3

= limx→+∞2x3

4x3

= limx→+∞24

= limx→+∞12

= 12

Special Limitsexample of x→ ±∞ for Polynomials

limx→+∞2x3+99x+1000

1+2x2+4x3 = limx→+∞2x3

4x3

= limx→+∞24

= limx→+∞12

= 12

Special Limitsexample of x→ ±∞ for Polynomials

limx→+∞2x3+99x+1000

1+2x2+4x3 = limx→+∞2x3

4x3

= limx→+∞24

= limx→+∞12

= 12

Special Limitsexample of x→ ±∞ for Polynomials

limx→+∞2x3+99x+1000

1+2x2+4x3 = limx→+∞2x3

4x3

= limx→+∞24

= limx→+∞12

= 12

Special Limitsexample of x→ ±∞ for Polynomials

limx→+∞2x3+99x+1000

1+2x2+4x3 = limx→+∞2x3

4x3

= limx→+∞24

= limx→+∞12

= 12

Special Limitsexample of x→ ±∞ for Polynomials

limx→−∞2x4+99x+1000

1+2x2+4x3

= limx→−∞2x4

4x3

= limx→−∞24x

= limx→−∞12x

= 12 limx→−∞ x

= 12 · −∞

= −∞

Special Limitsexample of x→ ±∞ for Polynomials

limx→−∞2x4+99x+1000

1+2x2+4x3 = limx→−∞2x4

4x3

= limx→−∞24x

= limx→−∞12x

= 12 limx→−∞ x

= 12 · −∞

= −∞

Special Limitsexample of x→ ±∞ for Polynomials

limx→−∞2x4+99x+1000

1+2x2+4x3 = limx→−∞2x4

4x3

= limx→−∞24x

= limx→−∞12x

= 12 limx→−∞ x

= 12 · −∞

= −∞

Special Limitsexample of x→ ±∞ for Polynomials

limx→−∞2x4+99x+1000

1+2x2+4x3 = limx→−∞2x4

4x3

= limx→−∞24x

= limx→−∞12x

= 12 limx→−∞ x

= 12 · −∞

= −∞

Special Limitsexample of x→ ±∞ for Polynomials

limx→−∞2x4+99x+1000

1+2x2+4x3 = limx→−∞2x4

4x3

= limx→−∞24x

= limx→−∞12x

= 12 limx→−∞ x

= 12 · −∞

= −∞

Special Limitsexample of x→ ±∞ for Polynomials

limx→−∞2x4+99x+1000

1+2x2+4x3 = limx→−∞2x4

4x3

= limx→−∞24x

= limx→−∞12x

= 12 limx→−∞ x

= 12 · −∞

= −∞

Special Limitsexample of x→ ±∞ for Polynomials

limx→−∞2x4+99x+1000

1+2x2+4x3 = limx→−∞2x4

4x3

= limx→−∞24x

= limx→−∞12x

= 12 limx→−∞ x

= 12 · −∞

= −∞

Special Limitsexample of x→ ±∞ for Polynomials

limx→+∞2x4+99x+1000

1+2x2+4x6

= limx→+∞2x4

4x6

= limx→+∞2

4x2

= limx→+∞1

2x2

= 12 limx→+∞

1x2

= 12 ·

1+∞

= 12 · 0

+ = 0+ = 0

Special Limitsexample of x→ ±∞ for Polynomials

limx→+∞2x4+99x+1000

1+2x2+4x6 = limx→+∞2x4

4x6

= limx→+∞2

4x2

= limx→+∞1

2x2

= 12 limx→+∞

1x2

= 12 ·

1+∞

= 12 · 0

+ = 0+ = 0

Special Limitsexample of x→ ±∞ for Polynomials

limx→+∞2x4+99x+1000

1+2x2+4x6 = limx→+∞2x4

4x6

= limx→+∞2

4x2

= limx→+∞1

2x2

= 12 limx→+∞

1x2

= 12 ·

1+∞

= 12 · 0

+ = 0+ = 0

Special Limitsexample of x→ ±∞ for Polynomials

limx→+∞2x4+99x+1000

1+2x2+4x6 = limx→+∞2x4

4x6

= limx→+∞2

4x2

= limx→+∞1

2x2

= 12 limx→+∞

1x2

= 12 ·

1+∞

= 12 · 0

+ = 0+ = 0

Special Limitsexample of x→ ±∞ for Polynomials

limx→+∞2x4+99x+1000

1+2x2+4x6 = limx→+∞2x4

4x6

= limx→+∞2

4x2

= limx→+∞1

2x2

= 12 limx→+∞

1x2

= 12 ·

1+∞

= 12 · 0

+ = 0+ = 0

Special Limitsexample of x→ ±∞ for Polynomials

limx→+∞2x4+99x+1000

1+2x2+4x6 = limx→+∞2x4

4x6

= limx→+∞2

4x2

= limx→+∞1

2x2

= 12 limx→+∞

1x2

= 12 ·

1+∞

= 12 · 0

+ = 0+ = 0

Special Limitsexample of x→ ±∞ for Polynomials

limx→+∞2x4+99x+1000

1+2x2+4x6 = limx→+∞2x4

4x6

= limx→+∞2

4x2

= limx→+∞1

2x2

= 12 limx→+∞

1x2

= 12 ·

1+∞

= 12 · 0

+ = 0+ = 0

Special Limitsexample of x→ ±∞ for Polynomials

limx→+∞2x4+99x+1000

1+2x2+4x6 = limx→+∞2x4

4x6

= limx→+∞2

4x2

= limx→+∞1

2x2

= 12 limx→+∞

1x2

= 12 ·

1+∞

= 12 · 0

+ = 0+ = 0

Special Limitsexample of x→ ±∞ for Polynomials

limx→+∞2x4+99x+1000

1+2x2+4x6 = limx→+∞2x4

4x6

= limx→+∞2

4x2

= limx→+∞1

2x2

= 12 limx→+∞

1x2

= 12 ·

1+∞

= 12 · 0

+ = 0+ = 0

Special Limitsexample of x→ ±∞ for Polynomials

limx→+∞2x4+99x+1000

1+2x2+4x6 = limx→+∞2x4

4x6

= limx→+∞2

4x2

= limx→+∞1

2x2

= 12 limx→+∞

1x2

= 12 ·

1+∞

= 12 · 0

+ = 0+ = 0

Special Limitsexample of x→ ±∞ for Polynomials

limx→+∞2x4+99x+1000

1+2x2+4x6 = limx→+∞2x4

4x6

= limx→+∞2

4x2

= limx→+∞1

2x2

= 12 limx→+∞

1x2

= 12 ·

1+∞

= 12 · 0

+ = 0+ = 0

Special Limitsexample of x→ ±∞ for Polynomials

limx→+∞2x4+99x+1000

1+2x2+4x6 = limx→+∞2x4

4x6

= limx→+∞2

4x2

= limx→+∞1

2x2

= 12 limx→+∞

1x2

= 12 ·

1+∞

= 12 · 0

+ = 0+ = 0

Special Limitsexample of x→ ±∞ for Polynomials

limx→+∞2x4+99x+1000

1+2x2+4x6 = limx→+∞2x4

4x6

= limx→+∞2

4x2

= limx→+∞1

2x2

= 12 limx→+∞

1x2

= 12 ·

1+∞

= 12 · 0

+ = 0+ = 0