Snow Pack Analyser, March 2010 1 Snow Pack Analyser SPA.

Post on 19-Jan-2016

245 views 0 download

Tags:

Transcript of Snow Pack Analyser, March 2010 1 Snow Pack Analyser SPA.

Snow Pack Analyser, March 2010 1

Snow Pack Analyser SPA

Snow Pack Analyser, March 2010 2

Contents

• History

• Principle of Measurement

• SPA Snow Parameters

• SPA System

• Sensor Setups

• Examples

• Summary

Snow Pack Analyser, March 2010 3

History

• Snowpower: EU research project– FZK Karlsruhe (Germany)– SLF Davos (Switzerland)– KTH Stockholm (Sweden)– Hydro-Quebec (Canada)– INRS (Canada)– Sommer (Austria)

• Sensor Development and Improvement

• Snow Pack Analyser SPA

2001

.

.

2004

2004...

2008

2009

Test site Davos, SLF

Test site Quebec, Hydro Quebec

Snow Pack Analyser, March 2010 4

Principle of measurement

• Three components of snow: ice, water and air• Frequency dependence of dielectric constants• Measuring of complex impedance at minimum two frequencies• Estimation of the volume contents of the components• Calculation of the density• Calculation of SWE in combination with snow depth

IceWater

Real part

Imaginary part

Frequency [Hz]

Die

lect

ric

Const

ant

Snow Pack Analyser, March 2010 5

SPA Snow Parameters

• Snow density

• Snow water equivalent SWE

• Contents of ice and liquid water in snow

• Snow depth

• Snow temperatures (optional)– Profile– Ground– Surface

Snow Pack Analyser, March 2010 6

SPA System

• Sensor– Length between 3 and 10 m– Width of 6 cm

• Suspension– Sloping or horizontal installation– Displacement sensor

• Snow Depth Sensor– Transit-time measurement of ultrasonic pulse– Temperature compensation

• Measurement and control unit– Impedance analyser– Multiplexer for 1 to 4 cables– Calculation of snow parameters– RS 232 data output

Snow Pack Analyser, March 2010 7

Measurement and Control Unit

Sensor 1

Sensor 2

Sensor 3

Sensor 4

Snow Depth

Displacement

Temperatures

DC 10..15 V

RS 232

Output Data:

Sensor 1..4

- Density

- SWE

- Liquid Water Content

- Ice Content

- Snow Depth

- Temperatures

SPA

Snow Pack Analyser

Input Data:

Sensor 1..4

- Length

- Top Level

- Bottom Level

Snow Pack Analyser, March 2010 8

Common Setup

Combination of sloping and horizontal sensors-> Snow parameters of integral snow cover-> Additional data at specific levels

Snow Pack Analyser, March 2010 9

Profile Setup

Multiple horizontal sensors at defined levels-> Profile Information

Snow Pack Analyser, March 2010 10

Area Setup

Star shaped installation of multiple sensors-> Data with high areal information-> Up to remote sensing pixel size

Snow Pack Analyser, March 2010 11

SPA Installation

Combination of sloping and horizontal sensors

Suspension springs and winches

Snow Pack Analyser, March 2010 12

Displacement

ΔL of 10 cm -> 50 cm more Sensor in Snow

Snow

MastSensor

ΔL

Snow

Mast

Snow Pack Analyser, March 2010 13

Displacement

Davos (Switzerland) - Sloping Sensor - 10 m

Snow Pack Analyser, March 2010 14

Davos

Davos (Switzerland) – 2660 m

Snow Pack Analyser, March 2010 15

Davos

Davos (Switzerland) – 2660 m

Snow Pack Analyser, March 2010 16

Davos 2006/2007

Davos (Switzerland) - Sloping Sensor - 10 m

Snow Pack Analyser, March 2010 17

Davos 2008/2009

Davos (Switzerland) - Sloping Sensors - 10 and 5 m

Snow Pack Analyser, March 2010 18

Davos 2008/2009

Davos (Switzerland) - Horizontal Sensors - 10 and 5 m

Snow Pack Analyser, March 2010 19

Davos 2008/2009

Davos (Switzerland) - Horizontal Sensors - 10 and 5 m

Snow Pack Analyser, March 2010 20

Korsvattnet

Korsvattnet (Sweden) – 700 m

Snow Pack Analyser, March 2010 21

Korsvattnet

Korsvattnet (Sweden) – 700 m

Snow Pack Analyser, March 2010 22

Korsvattnet 2008/2009

Korsvattnet (Sweden) - Horizontal Sensor - 5 m

Point A

Increase of liquid water content

No changes in snow depth and snow pillow

-> Begin of melting process

Point B

At about 7-8 % liquid water content

Decrease of SWE on snow pillow

-> Begin of run-off

A

B

Snow Pack Analyser, March 2010 23

Run-Off Forecast

A

B

C

Point A

Snow compression

SWE constant

Point B

Run-off starts

SWE decreases

Point C

Significant increase of liquid water content prior to the start of run-off (point B)

Davos (Switzerland) - Sloping Sensor - 10 m

Snow Pack Analyser, March 2010 24

Hindelang

Hindelang (Germany) – 980 m

Snow Pack Analyser, March 2010 25

Snow Cover with Ice Layers

Hindelang (Germany) – Sloping Sensor – 5 m

Point A

SPA and snow pillow show similar data

Point B

Appearance of ice layers in snow pack

Point C

Snow depth stays constant

Snow pillow fluctuates

SPA does not fluctuate

A

B

C

Snow Pack Analyser, March 2010 26

Foehn Event

Hindelang (Germany) – Sloping Sensor – 5 m

Point A

Temperature > 0°C

Slight increase of snow density and liquid water content

Point B

Foehn event causes sudden increase of liquid water content above saturation of snow pack

-> run-off situation

-> risk of wet snow avalanches

A

B

Snow Pack Analyser, March 2010 27

Daily Variation of Liquid Water

Hindelang (Germany) – Horizontal Sensor – 5 m

Point A

High liquid water content

Points B

Slight increase of liquid water above saturation causes sudden rise of liquid water.

This liquid water is reduced by run-off.

-> Buffer behavior of snow regarding to liquid water

A B

Snow Pack Analyser, March 2010 28

Daily Variation of Liquid Water

Hindelang (Germany) – Horizontal Sensor – 5 m

Point A

Maximum of air temperature

Point B

Begin of increasing water content

-> Shift between air temperature and liquid water content

A

B

Snow Pack Analyser, March 2010 29

Sylvensteinspeicher

Sylvensteinspeicher (Germany) – 780 m

Snow Pack Analyser, March 2010 30

Sylvensteinspeicher 2009/2010

Sylvenstein (Germany) - Horizontal Sensor - 5 m

Point A

Increase of liquid water content

No changes in SWE snow depth decreases

-> Begin of melting process

Point B

At about 6 % liquid water content

Decrease of SWE on snow pillow

-> Begin of run-off

A

B

Snow Pack Analyser, March 2010 31

Installations

Val de Aosta (Italy)Tauplitz (Austria)

Snow Pack Analyser, March 2010 32

Summary

• In-situ measurement of snow parameter– Liquid water content– Snow density – Snow water equivalent– Snow depth

• Specific setup of sensors– Integral snow pack– Profile data– High areal information

• Forecasting the start of water run-off

• Not influenced by ice layers

• Simple installation even at hillsides