SIS mixers for 1mm band A. Navarrini, G. Engargiola, R. Plambeck (Berkeley) N. Wadefalk (Caltech)

Post on 03-Feb-2016

81 views 1 download

description

SIS mixers for 1mm band A. Navarrini, G. Engargiola, R. Plambeck (Berkeley) N. Wadefalk (Caltech). short term: increase bandwidth of existing BIMA mixers to 4 GHz long term: develop new generation of 1mm mixers using UVa SIS mixers. Current BIMA 1mm receivers. DSB, fixed-tuned SIS mixers - PowerPoint PPT Presentation

Transcript of SIS mixers for 1mm band A. Navarrini, G. Engargiola, R. Plambeck (Berkeley) N. Wadefalk (Caltech)

SIS mixers for 1mm bandA. Navarrini, G. Engargiola, R. Plambeck (Berkeley)

N. Wadefalk (Caltech)

• short term: increase bandwidth of existing BIMA mixers to 4 GHz

• long term: develop new generation of 1mm mixers using UVa SIS mixers

SIS junc tio n

Fro nt b lo c k

SISb ia s

Alig nm e nt p ins

Rea r b lo c k

50 O hmIF ne two rk

C a vitie s fo rfixe d m a g ne t

WGc a vity

To IF Am p lifie r

1 m m M ixe r Blo c k

Current BIMA 1mm receivers

• DSB, fixed-tuned SIS mixers

• single SIS junction devices fabricated by G. Engargiola at U. Illinois

• 800 MHz IF band, 1.4 - 2.2 GHz (limited by IF amp)

5.5 K

4.5 K

3.6 K

DSB receiver temperatures ~ 50 to 80 K(measured outside dewar, including all optics losses)

Need to replace narrowband IF amplifier

• ALMA solution is to build I.F. amplifier from discrete transistors– more flexibility in matching impedance of SIS junction

• our preferred solution is to use InP MMIC– WBA13, developed by Weinreb and Wadefalk for ATA

– 35 dB gain, noise temp 3-6 K

– 10-20 mW power dissipation

Comparison of amplifier gains, noise temperatures

ALMA Band 6 amplifier, designed for 4-12 GHz

WBA13 MMIC, designed for 0.5-11.5 GHz

Gene Lauria, ALMA Band 6 PDR, Apr 2004 Wadefalk and Weinreb

Option 1: replace amplifier on 12 K stage with MMIC module

(WBA13 amplifier module provided by N. Wadefalk)

Fe e d -ho rn Sta in le ss ste e lc o a xia l c a b le

WBA13 a m p lifie r m o d ule

SIS m ixe r b lo c kIF o utp utDC m a g ne t

Option 1: Trcvr DSB measured with 0-6 GHz I.F.

filter comparable to narrowband results

Option 1: gain and noise from 0-9 GHzripple tolerable from 225-240 GHz, bad outside this range

0 1 2 3 4 5 6 7 8 9

-130

-120

-110

-100

-90

-80

260 GHz

SIS Mixer cascaded with WBA13 amplifier moduleJunction from wafer 5: R

N=14.2 Ohm - Block: 31-015-1

SIS: Vdc

=2.0 mV ; ILO

=35 uA;Mixer Temp: 4.7 K; 2" stinless steel coax. cable+50 Ohm IMN + JCA amp. 1-10 GHz

Cold Load Ambient Load

IF O

utpu

t P

ower

[dB

m]

IF Frequency [GHz]

0 1 2 3 4 5 6 7 8 90

50

100

150

200

250

300

350

400

260 GHz

Trec,DSB(0-6 GHz)=85 KT

rec,DSB(1.2-2.2 GHz)=83 K

Trec,DSB(2-4 GHz)=87 KTrec,DSB(4-8 GHz)=88 K

SIS Mixer cascaded with WBA13 amplifier moduleJunction from wafer 5: R

N=14.2 Ohm - Block: 31-015-1

SIS: Vdc

=2.0 mV ; ILO

=35 uA;Mixer Temp: 4.7 K; 2" stinless steel coax. cable+50 Ohm IMN + JCA amp. 1-10 GHz

Tre

c,D

SB

[K]

IF Frequency [GHz]

225 GHz

260 GHz

Option 2: integrate MMIC directly into mixer block

M ixe rc h ip

WBA12 WGc a vity

M ixe rb ia s c irc u it

WBA12b ia s c irc u it

IF o utp utIF ne two rk

C a vityfo r fixe dm a g ne t

• MMIC tended to oscillate; had to switch from WBA13 to lower-gain WBA12

• mixer block at 4.65 K instead of 3.85 K

• gain ripple still a problem

Option 3: incorporate pre-packaged WBA13 (ATA module) into thermally-split block

3.8 K12 K

Option 3: DSB noise temperatures0-6 GHz I.F. filter

200 210 220 230 240 250 260 270

40

50

60

70

80

90

SIS Mixer cascaded with WBA13 module using thermally split blocks

Tre

c,D

SB

[K]

LO Frequency [GHz]

Option 3: gain, noise from 0-6 GHz(ripple much improved, but gain falls off above 3 GHz)

0 1 2 3 4 5 6

-90

-85

-80

-75

-70

-65

-60

260 GHz

SIS: Vdc

=2.3 mV; ILO

=36 uAWBA13: V

d=1.19 V; I

d=31.5 mA

Vga

=0.38 V; Iga

=25.4 uA V

gb=0.38 V; I

gb=25.4 uA

Tphys,mixer

=3.83 K

Cold load Ambient load

IF O

utpu

t P

Ow

er [

dBm

]

IF Frequency [GHz]

0 1 2 3 4 5 60

100

200

300

260 GHz

SIS: Vdc=2.3 mV; ILO=36 uAWBA13: V

d=1.19 V; I

d=31.5 mA

Vga

=0.38 V; Iga

=25.4 uA V

gb=0.38 V; I

gb=25.4 uA

Tphys,mixer

=3.83 K T

rec(0-6GHz)=79 K

Tre

c [K

]

IF Frequency [GHz]

225 GHz

260 GHz

broadening bandwidth of BIMA 1mm mixers to 4 GHz: short term solutions

option advantages disadvantages

1 • no need to rebuild mxr blocks

• no extra heat load on stage 3

• amplifier oscillations unlikely

• huge gain ripples below 220, above 240 GHz

2 • must build new mixer blocks

• increased heat load on stage 3

3 • lower gain and noise ripple • must build new mixer blocks

if we must have 4 GHz bandwidth by Fall 2005, option 1 probably is best

Longer term

• goal: DSB Trcvr = 25 K, 8 GHz I.F. bandwidth • switch to ALMA Band 6 devices

– we have only ~50 usable UI junctions

– NRAO has contracted for 9 UVa wafers, each with 1066 devices (9600 devices); approx 50% are usable

– if necessary, we could contract with UVa for an additional wafer

• construct thermally split block with WBA13 IF amp– operating WBA13 at 12 K reduces heat load on 4 K refrig,

may also improve 1/f gain stability of MMIC

ALMA Band 6 SIS devices

• DSB Trcvr ~ 20 K• series array of 4

junctions – avoids problems with saturation, but requires more LO pwr

Tony Kerr has given us 4 ALMA devices to try

• sideband separation requires complex mixer block, carefully phase-matched preamps

• NRAO estimates ~25% acceptance rate for ALMA mixers

ALMA is building sideband separating mixers, but we would use devices as DSB mixers

from ALMA Band 6 PDR, Apr 2004

ALMA sideband separating mixer blockwith attached preamps

Sensitivity comparisons