SINGS: THE SIRTF NEARBY GALAXIES SURVEY Robert Kennicutt (U. Arizona) .

Post on 21-Dec-2015

218 views 2 download

Tags:

Transcript of SINGS: THE SIRTF NEARBY GALAXIES SURVEY Robert Kennicutt (U. Arizona) .

SINGS: THE SIRTF NEARBY GALAXIES SURVEY

Robert Kennicutt

(U. Arizona)

http://ircamera.as.arizona.edu/legacy

SINGS PROJECT OVERVIEW

• Science Core – Characterize star formation in 75 nearby

galaxies– Trace processing of energy from young stars

through the dusty ISM

• Legacy Core– Observations designed to maximize long-term

scientific return, archival value of survey– Primary data products SED, spectral libraries of

galaxies and IR-emitting components

OUTLINE

• SIRTF Legacy Overview – SIRTF scientific capabilities

– Legacy science program

• SINGS– scientific context

– scientific objectives

– observing program and strategy

– data products and archive

• Infrared Great Observatory– Background Limited Performance 3 -- 180 m

– 85 cm f/12 Beryllium Telescope, T < 5.5K

– 6.5 m Diffraction Limit

– New Generation Detector Arrays

– Instrumental Capabilities

• Imaging/Photometry, 3-180 m

• Spectroscopy, 5-40 m

• Spectrophotometry, 50-100 m

– Planetary Tracking, 1 arcsec/sec

– >75% of observing time for the

General Scientific Community

– 2.5 yr Lifetime/5 yr Goal

– Launch in July 2002 (Delta 7920H)

– Solar Orbit

• Cornerstone of NASA’s Origins Program

Space Infrared Telescope Facility

SIRTF Telescope Installation

Solar Orbit:A Better Choice

0.6 AU 0.5 AU 0.4 AU 0.3 AU 0.2 AUEarth

Observatory positionon February 3, 2007

“Loops” and “kinks”in trajectory occuron 1-year centers.

50% More Mass Than HEOBetter Thermal EnvironmentNo Earth-Moon Avoidance

No Need for PropulsionNo Earth Radiation Belt

Simple Deep Space TrackingLess Complex Fault ProtectionSimple Observation Planning

DSN & HGA Comm

Sun

SIRTF Family Portrait

MIPSIRAC

IRS

8

SIRTF Measurements - Imaging

3.6 , m

MIPS

IRAC

Numberof

Pixels

Fieldof

View

4.5 5.8 8.0

256x256 256x256 256x256 256x256

5’x5’ 5’x5’ 5’x5’ 5’x5’ 1’x1.2’

IRS

15

33x45

24

5’x5’

128x128

70

5’x5’

32x32

160

0.5’x5’

2x20

9

SIRTF Measurements - Spectroscopy

0

10

100

1000

4 10 40 160100

Wavelength, microns

Re

so

lvin

g P

ow

er

IRS Hi

IRS Lo

MIPS SED

MIPSIRSIRAC

10

SIRTF Performance Expectations

100

10

1

10-1

10-2

10-3

10-4

4.5 10 25 45 70 160

(m)

LIM

ITIN

G F

LUX

F (

mJy

)

ALL FLUX LIMITS 1 – 1 HR (HIGH LATITUDE CONFUSION INCLUDED)

*

SIRTF IMAGING

SIRTF SPECTROSCOPY (R = 50)

SIRTF SED MODE

109 yr, 5MJ

DISK AROUND BETA PICTORIS x 10 -3

ULTRALUMINOUS GALAXY, Z = 7

L GALAXY, Z = 5

- MWW (2/20/98)

BROWN DWARF AT 10 pc

11

SIRTF Legacy Science• Requirements

– Large, coherent scientific investigations - not realizable as series of smaller GO Programs

– Programs whose data are of general and lasting importance to the broad community and also stimulate SIRTF follow-on

– Data are non-proprietary, enabling timely and effective opportunities for SIRTF follow-on and archival research

• Scope– Six teams selected in November, 2000, with a total of

3160 hours of observing time (~50% of the first year of SIRTF)

– Limited amount of time on NOAO facilities was allocated in the same process

– All teams planning to deliver value-added products (data bases, catalogs, atlases, non-SIRTF data) for distribution to community via SSC

The Legacy Science Program• Mark Dickinson (STScI) & 38 Co-Investigators @ 13 institutions

“GOODS: Great Observatories Origins Deep Survey”647 hours (IRAC, MIPS)

• Carol Lonsdale (IPAC/Caltech) & 19 Co-Is @ 9 institutions“SWIRE: SIRTF Wide-area Infrared Extragalactic Survey”851 hours (IRAC, MIPS)

• Robert Kennicutt (U. Arizona) & 14 Co-Is @ 7 institutions“SINGS: SIRTF Nearby Galaxies Survey”512 hours (IRAC, MIPS, IRS)

• Ed Churchwell (U. Wisconsin) & 13 Co-Is @ 6 institutions“The SIRTF Galactic Plane Survey (GLIMPSE)”400 hours (IRAC)

• Neal Evans (U. Texas) & 10 Co-Is @ 8 institutions“From Molecular Cores to Planets (Cores to Disks)”400 hours (IRAC, MIPS, IRS)

• Michael Meyer (U. Arizona) & 18 Co-Is @ 12 institutions“The Formation and Evolution of Planetary Systems (FEPS)”350 hours (IRAC, MIPS, IRS)

 [ ] limiting flux model dependent due to predicted confusion

*- MIPS Real Deep Survey will cover only 0.02 square degree

**- Locations of Surveys as follows: WIDE = NOAO Deep Field; DEEP = HDF-N, Groth Strip, CXO-S, SSA 13, Lockman Hole, XMM Deep; GOODS = HDF-N, CXO-S;REAL DEEP = Groth Strip; FIRST LOOK = North Ecliptic Pole

*** - GOODS Survey may go somewhat deeper in IRAC bands over ~ 0.02 sq degrees

Type**

m m m m m m m

SWIRE(Legacy)

70 7.3 18.9

9.7 18

27.5 16.5

32.515.9

450 2750 [17500]

WIDE(GTO) 

9 8.418.7

11 17.8

33 16.3

38 15.5

600 3600 [33000]

DEEP(GTO) 2 [2.5] 20.1

3.6 19.0

11.4 17.4

15.3 16.5

150 1000 [30000]

REAL DEEP (GTO)

0.2 [2.5] 20.1

[2.5] 19.4

2.5 19.1

3.4 18.1

[60]* [700]*  

FIRST LOOK (SSC)

5 23 17.6

24 17.0

70 15.5

58 15.0

1100 3800 [33000]

GOODS*** (Legacy)

~0.1 [0.55] 21.7

[0.55] 21

[1.1] 20

[1.2] 19.2

[22]    

 

AreaDeg^2

5- limiting flux, Jy(5- limiting magnitude)

Planned SIRTF Surveys

Anchor Points in the Local Universe (SINGS)

Simulated galaxy spectrum (z=1)

The Local Universe

The Distant Universe

SINGS TeamArizona

Rob Kennicutt (PI), George Bendo, Chad Engelbracht, Karl Gordon, Aigen Li, George Rieke, Marcia Rieke, JD Smith

Caltech/IPAC/SSCLee Armus, George Helou, Tom Jarrett, Helene Roussel

STScIDaniela Calzetti, Claus Leitherer, Michael Regan, Sangeeta Malhotra

BucknellMichele Thornley

Harvard/CfALisa Kewley

NASA Ames David Hollenbach

NRAOFabian Walter

Princeton Bruce Draine

WyomingDanny Dale

Ferguson et al 1998, ApJ, 506, L19 ISOCAM 15m

NGC 6946 H vs IR

Barger et al. 2000, AJ, 119, 2092

IR-submm selected

UV-visible selected

•bolometric pixel-resolved maps of 75 galaxies•spatially-resolved SED maps: 0.15 - 200 m•high-resolution spectra of 150 IR-emitting regions•matched H, HI, CO, dust, radio continuum maps

Physics of Galaxy Evolution

• Robust treatment of dust extinction & heating

• Test, reconcile UV, H, FIR-based SFR scales• Quantify physical relationships between SFR

and ISM properties (SF law) over full range of environments

• Physical characteristics, demographics of obscured vs UV-bright SF components along Hubble sequence

• ISM energy balance, FIR/radio correlation

SINGS will bridge gapbetween UV-Ha based diagnostics of disk star formation and IR-based studies of dense starburst regions.

normal disks

IR-selected starbursts

105 range!Kennicutt 1998, ApJ, 498, 541

Ha SurveysKISS, UCM

SINGG/HIPASSHaGS

STARFORMMOSAIC Clusters

11 Mpc

SIRTF Surveys

GOODSSWIRE

MIPS GTO

Submm Surveys

SCUBAALMA

Spectroscopic Surveys

Keck, MagellanVLT, MMT

Subaru

UV Surveys

GALEX

SDSS

SINGS+

GTO Surveys

Physics of the Star-Forming ISM

• dust physics (PAH features, IR SEDs)– observe full range of Z/Zo and ISRF– full spatial coverage from IRAC, MIPS maps– in-depth coverage with IRS low-res maps

• ionized gas (fine-structure lines)– hardness indices (Ne+ -> Ne++++)– ionization rates ([NeII])– IMF, AGN vs starburst diagnostics

• cold gas (H2, [SiII], [FeII])– physics of PDR, SF region interfaces

• continuity of physical properties vs density, AV, dynamical environment

• visible --> infrared diagnostics of SF regions

SIRTF CapabilitiesFiducial distance = 3.5 Mpc (e.g., M81 group)

• resolution– angular resolution = /4 (m)

– linear resolution = 40-700 pc (3.5 - 160 m)• sensitivities (all 10)

– MIPS: 105 Mo cloud in 10 sec – IRAC: 104 Mo cloud in 10 sec – IRS: [NeII]12.8m from Orion in 30 sec– IRS: H2 S(0) -> S(1) from 5x105 Mo cloud (100K)

in 500 sec

SINGS Mapping Schemes

IRAC and MIPS fields SED Scans Targeted Spectroscopy

Sample Design and Selection• Physically-Based Galaxy Sample

– full parameter space of type (SFR, gas fraction), mass (luminosity, Z/Zo), LIR/LB

– representative range of other properties (inclination, bar, spiral structure, nuclear type, environment)

– preference to well-studied objects within parameter space cells

• Physically-Based Spectroscopic Sample– parameter space: abundance, luminosity, AV,

radiation field strength, shape– mix of optically, IR-selected targets

SINGS Sample: Parameter Space

SINGS Mapping Schemes

IRAC and MIPS fields SED Scans Targeted Spectroscopy

SINGS Mapping Schemes

IRAC and MIPS fields SED Scans Targeted Spectroscopy

Observations: Summary

• Imaging– IRAC + MIPS (3.5 - 160m)– full wavelength + spatial coverage (R < R25)

• Low-Resolution Spectral Scans– radial strip scans (15 > 1 MJy/sr; R < 0.55 R25)– IRS scans (14-40 m) + MIPS SED scans (52-99 m)

• Targeted Spectroscopy– 75 nuclei + 75 extra-nuclear regions– physically-based sample (Z/Zo, Lbol, G, T*, AV , F8/15) – IRS low-resolution scans (5-14 m, R = 60-120) – IRS high-resolution mini-maps (10-37 m, R = 600)

Ancillary Data

• visible/IR imaging (BVRIJHK, H)

• visible spectra (3600-7000 A)

– spectral scans

– nuclear spectra, extranuclear targets

• HST Pa-, H-band maps (central arcmin2)

• CO, HI maps (BIMA SONG, VLA, WSRT)

• radio continuum maps (VLA, WSRT)

• UV imaging (GALEX) (1500 A, 2500 A)

Archival Science (examples)

• stellar mass distributions, spiral structure• optical depth of disks• dust and gas in E/S0 galaxies• cold dust in halos, extended disks• the AGN/starburst connection• interstellar shocks• applications and synergies

– modeling of high-z galaxies– modeling of ULIRGs– Galactic star formation: the big picture

The SINGS Legacy: Products

• Full-coverage IRAC + MIPS imaging• Pixel-resolved SED library of galaxies

(3.6 - 160 m ---> 0.1 - 160 m)

• Spectral library of galaxy centers and extra-nuclear IR-emitting regions (5 - 37 m)

• Multi-wavelength data (BVRIJHK, Ha, UV, CO)

• Data analysis tools– matched-beam SED, spectrum extraction– spectral data cube generators

• Web-based access, browse, downloading

Legacy Design

• Unbiased, physically-based samples

• Homogeneous data sets, uniform wavelength coverage, sensitivity limits, spatial sampling

• Comprehensive data, maximize archival value, discovery potential

• Integrated multi-wavelength observations

• Complement GTO observations

SIRTF Instrumentation Summary

Pixel Size Sensitivity (Jy) (m) Array Type F.O.V. (arcsec) (5 in 500 sec, incl. confusion)

IRAC: InfraRed Array Camera

3.6 InSb 4.9 5.1' x 5.1' 1.2 3

4.5 InSb 4.3 5.1' x 5.1' 1.2 4

5.8 Si:As (IBC) 4.0 5.1' x 5.1' 1.2 10

8.0 Si:As (IBC) 2.7 5.1' x 5.1' 1.2 15

MIPS: Multiband Imaging Photometer for SIRTF

24 Si:As (IBC) 4 5.1' x 5.1' 2.4 370

70 Ge:Ga 3.5 2.7' x 2.7' / 5.1' x 5.1' 4.9 / 9.4 1400

52 - 99 Ge:Ga 14 - 24 18.75" x 4' 9.4 6500

160 Ge:Ga (stressed) 4 0.5' x 5.1' 15 22.5 mJy

IRS: Infrared Spectrograph

5.3 - 14.5 Si:As (IBC) 60 - 120 3.6" x 55" 1.8 550 Jy

15 (peakup imaging) Si:As (IBC) 3 1' x 1.2' 1.8 100 Jy

10 - 19.5 Si:As (IBC) 600 4.8" x 11.8" 2.4 3x10-18 W/m2

14 - 40 Si:Sb (IBC) 60 - 120 9.7" x 151" 4.8 1.5 mJy

19 - 37 Si:Sb (IBC) 600 9.7" x 22.4" 4.8 3x10-18 W/m2

Sensitivity numbers are indicative of SIRTF performance. Detailed times estimates should be based on tools available on SSC website: http://sirtf.caltech.edu.

normal galaxies

starburst galaxies

gas density

sta

r fo

rmati

on

rate

NGC 2841 NGC 3184 NGC 4449 Sb Sc Irr

Extended Star Formation in Disks - global trends

Kennicutt 1998, ARAA, 36, 189 Bendo et al. 2002, in prep

Circumnuclear Star Formation

- trends with type

Ho et al. 1997, ApJ, 487, 595

Bell et al. 2002, ApJ, 565, 994

Testbed:

LMC

Bell 2002, ApJL, in prep

H Imaging Surveys

Survey Ngal Selection PI

GOLD Mine 277 magnitude Coma/Virgo G. Gavazzi

MOSAIC ~1100 H Abell clusters R. Kennicutt S. Sakai

HGS 450 mag/volume field (<40 Mpc) P. James

SINGG 500 HI field (<40 Mpc) G. Meurer

STARFORM 150 volume field (<25 Mpc) S. Hameed

11 Mpc 432 volume field (<11 Mpc) R. Kennicutt

KIG ~270 magnitude field L. Montenegro

Palomar/LCO 83 obj prism BCDs (<50 Mpc) A. Gil de Paz

SINGS 75 multi-param <30 Mpc R. Kennicutt

H Surveys: Objectives• Complete inventories of local SF galaxies

– robust determination of SF at z = 0 (SINGG)– completeness of objective prism surveys (e.g., UCM)– completeness of optically, HI-selected surveys– serendipidous detection of star-forming galaxies

• Environmental effects on disk SF• Dwarf galaxy evolution

– role of bursts, quiescent evolution, duty cycle

• Metrics of disk star formation, evolution• Aperture, inclination effects on total SFRs • Integration with GALEX, SIRTF

– UV vs Ha SFRs– optically visible vs enshrouded SF

Physics of Galaxy Evolution

Bolometric pixel-resolved maps of 75 galaxiesSpatially-resolved SED maps: 0.15 - 200 m

Matched H, HI, CO, dust, radio continuum maps

• Robust treatment of dust extinction & heating• Test, reconcile UV, H, FIR-based SFR scales• Quantify physical relationships between SFR and ISM

properties (SF law) over full range of environments• Physical characteristics, demographics of obscured

vs UV-bright SF components along Hubble sequence• ISM energy balance, FIR/radio correlation