Single-shot read-out of one electron spin

Post on 03-Jan-2016

28 views 6 download

Tags:

description

Single-shot read-out of one electron spin. QIP Workshop Newton Institute, Cambridge 27-30 Sep. 2004. Lieven Vandersypen Jeroen Elzerman Ronald Hanson Laurens Willems van Beveren Frank Koppens Ivo Vink Wouter Naber Leo Kouwenhoven. 2. 1. F. F. 6. 3. F. 12 C. 13 C. 7. 13 C. F. - PowerPoint PPT Presentation

Transcript of Single-shot read-out of one electron spin

Single-shot read-out of one electron spin

Lieven Vandersypen

Jeroen ElzermanRonald HansonLaurens Willems van BeverenFrank KoppensIvo VinkWouter NaberLeo Kouwenhoven

QIP WorkshopNewton Institute, Cambridge27-30 Sep. 2004

A seven-spin NMR quantum computer

F

F

13C12C

F

12C

F

F

13C

C5H5 CO

Fe

1

3

54

26

7

CO

Vandersypen et al., Nature 414, 883 (2001)

Vandersypen & Chuang, RMP, Oct 2004.

15 = 3 x 5

Quantum computing with electron spins

Initialization 1 electron, low T, high B0

Loss & DiVincenzo, PRA 1998Vandersypen et al., Proc. MQC02 (quant-ph/0207059)

Read-out convert spin to charge

then measure charge

ESR pulsed microwave magnetic field

SWAP exchange interaction

H0 ~ i zi

HJ ~ Jij (t) i · j

HRF ~ Ai(t) cos(i t) xi

Coherence measure coherence time

in 2DEG: T2 > 100 ns (Kikkawa&Awschalom, 1998)

SL SR

Read-out convert spin to charge

then measure charge

Electrical single-shot spin measurement

Convert spin to charge, then measure charge

Loss & DiVincenzo, PRA 1998

Outline(1) one-electron

quantum dots…(3) …fast charge

detection…

(4) ….single spin measurement!(2) …two-level

system…

EZ = gBB

Outline: we need…(1) one-electron

double dots…(3) …fast charge

detection…

(4) ….single spin measurement!(2) …two-level

system…

EZ = gBB

• Electrically measured (contact to 2DEG)

• Electrically controlled (gated tunnel barriers, dot potential)

A quantum dot as a one-electron box

200 nm

A quantum point contact (QPC) as a charge detector

-0.80 -0.85 -0.90 -0.95 -1.000

2

Co

nd

uct

an

ce (

e2 /h)

QPC gate voltage (V)

Field et al, PRL 1993

-1.17 -1.20 -1.23 -1.26 -1.291.0

1.5

2.0

QP

C C

urre

nt (

nA)

Dot plunger voltage (V)

Few-electron double dotTransport through QPC

-0.96

-1.02

-0.15 -0.30

00

10

01

11

2221

12

VL

(V)

V PR(V)

-0.9

-1.1

0 -0.6

00

VL

(V)

V PR(V)

• Double dot can be emptied• QPC can detect all charge transitions

dIQPC/dVL

J.M. Elzerman et al., PRB 67, R161308 (2003)

0 Tesla

Outline: we need…(1) one-electron

double dots…

(2) …two-level system…

EZ = gBB

(3) …fast charge detection…

(4) ….single spin measurement!

Energy level spectroscopy at B = 0

B = 0 T

10

-10

0

VT (mV)-653 -695

VS

D (

mV

)

N=1

dIDOT/dVSD

• E ~ 1.1meV

• EC ~ 2.5meV

Ground and excited state

Ground state

N=0

DRAINSOURCE

200 nm M P R

Q

T

Notransport

-995 -1010VR (mV)

10 T

N=0

-675VT (mV)

N=1

2

-2

0

-657

6 T

VS

D (

mV

)

N=0N=1

0 T

2

-2

0 N=0

VS

D (

mV

)

GS

ES

Single electron Zeeman splitting in B//

B=0 B > 0

gBB

Hanson et al, PRL 91, 196802 (2003)Also: Potok et al, PRL 91, 016802 (2003)

0 5 10 150

0.1

0.2

B// (T)

EZ (

me

V)

|g|=0.44

IQPC

DRAIN

SOURCE

RE

SE

RV

OIR

200 nm M R

Q

T

-VP time

time

IQ

PC

P

0

EF

Excited-state spectroscopy on a nearly-closed quantum dot

•Apply pulse train to gate P

•Measure amplitude of pulse-response with lock-in amplifier

Electron tunneling small pulse response

Elzerman et al, APL 84, 4617, 2004Also: Johnson, cond-mat/04

1

10

-1.13 -1.15

N = 0N = 1

VP (

mV

)

VM (V)

VM (V)-1.135 -1.150

lock

-in s

igna

l (a

rb.u

nits

)

B = 10 T

EZ

eff

f = 385 Hz

Zeeman splitting for N = 1

Bipolar spin filter

0

0

Gate voltage

N=1 N=0VS

D (

mV

)

VS

D (

mV

)

Gate voltage

N=1N=2S

S

T+

T-

T0

T0

Expt: Hanson et al, cond-mat/0311414, Theory: Recher et al, PRL 85,1962, 2000

Outline: we need…(1) one-electron

double dots…

(2) …two-level system…

EZ = gBB

(3) …fast charge detection…

(4) ….single spin measurement!

• VA = 0.8nV/Hz1/2 (white)

• IA = 0.4 pA/Hz1/2 @ 40 kHz (~ f )

• CL = 1.5 nF

• Operating BW: 40 kHz

• Shot-noise limit: 40 MHz

IQPC

DRAIN

SOURCE

RE

SE

RV

OIR

200 nm M P R

Q

T

Fast charge detection

Observation of individual tunnel events

IQPC

DRAIN

SOURCE

RE

SE

RV

OIR

200 nm M P R

Q

T

• VSD = 1 mV

• IQPC ~ 30 nA• ∆IQPC ~ 0.3 nA

• Shortest steps ~ 8 µs

Vandersypen et al, APL, to appear (see cond-mat/0407121)

Pulse-induced tunneling

responseto pulse

IQ

PC (

nA)

Time(ms)

0 0.5 1.0 1.5

responseto electrontunneling

0.0

0.4

0.8

-0.4

Outline: we need…(1) one-electron

double dots…

(2) …two-level system…

EZ = gBB

(3) …fast charge detection…

(4) ….single spin measurement!

Spin read-out principle:convert spin to charge

N = 1

N = 1 N = 1N = 0

SPIN UP

SPIN DOWN

time

charge

0

time

charge

0

-e

-1

-e

Spin read-out procedureinject & wait

empty QD

Vp

uls

e

read-out spinempty QD

IQ

PC

Inspiration: Fujisawa et al., Nature 419, 279, 2002

Spin read-out resultsinject & wait

empty QD

Vp

uls

e

read-out spinempty QD

IQ

PC

“SPIN UP” “SPIN DOWN”

Time (ms)Time (ms)

0 1.00.5

IQ

PC (

nA)

0

1

2

1.5 0 1.00.5 1.5

Elzerman et al., Nature 430, 431, 2004

Verification spin read-out

Waiting time (ms)

Spi

n do

wn

frac

tion

0.0 0.5 1.0 1.5 12

0.1

0.2

0.3

Measurement of T1

B = 8 TT1 ~ 0.85 ms

B = 10 TT1 ~ 0.55 ms

B = 14 TT1 ~ 0.12 ms

• Surprisingly long T1

• T1 goes up at low B

Elzerman et al., Nature 430, 431, 2004

Single-shot read-out fidelity

visibility = 1-- 0.65

Future improvements:

• : lower Tel

• : faster charge detection

spin:

“down”

“up”

outcome:

=0.28

0.72

0.93=0.07

Threshold (nA)

0.0

1.0

0.8

0.6

0.4

0.2

0.6 1.0 0.8

65%

• Pr[ escapes]

• Pr[miss step] + Pr[ relaxes]

Outlook

Initialization 1 electron, low T, high B0

Read-out convert spin to charge

then measure charge

ESR pulsed microwave magnetic field

SWAP exchange interaction

H0 ~ i zi

HJ ~ Jij (t) i · j

HRF ~ Ai(t) cos(i t) xi

Coherence measure coherence time

T1 is long; T2 = ??

SL SR

EZ = gBB

EZ = gBB

J(t) J(t)

Single Electron Spin Resonance

x

z

S

yB1

S’

B0

fres

fLarmor

B1 = 1 mT fRabi~ 5 MHz

250 nm

IAC

B1B0

250 μm

L, R =10 MHzT2 =100 ns

300 fAFor 1.1 mT (~ -10dBm) Peak is only 300 fA

Detection of Continuous Wave ESREngel & Loss, PRL 86, 4648 (`01)

ISDS

D

L R

ESR induced current peak

Electron transport under CW microwaves

VG (V)-4245 -4290-0.396

0.431

V SD (

mV)

N=0N=1

dI/dVSD( S) 0.025-0.01

gate voltage (V) -1.023-1.029

I (pA)

0.8

0.0

from -60dBm to -40dBm

hf

hf

Photon Assisted TunnelingPumping

Electric field dominates signal!

Apply microwaves

Pulsed ESR scheme

Read out spin state

electric field component no longer hinders ESR detection

ESR in a Si-FET channelM. Xiao et al. Nature 430, 435 (‘04)

Summary

Tunable few-electron double dotElzerman et al., PRB 67, R161308, 2003

00Spin qubit ideas

Vandersypen et al, Proc. MQC02,quant-ph/0207059Engel et al. PRL (to appear)

DC or LOCK-IN SINGLE-SHOT

Zeeman splittingHanson et al, PRL 91, 196802, 2003

Fast charge detection

Single-shot spin read-out

T1 ~ 0.85 ms (8 T)Excited states using QPCElzerman et al, APL 84, 4617, 2004

Elzerman et al, Nature 430, 431, 2004

Vandersypen et al, APL to appear, cond-mat/0407121

http://qt.tn.tudelft.nl/research/spinqubits

Hanson et al, cond-mat/0311414

Bipolar spin filter

Tunable double dot designCiorga ’99

Open design

Field ’93Sprinzak ’01

QPC for charge detection

200 nm

T

ML RPL PR

QPC-R

IDOT

IQPCIQPC

QPC-L

GaAs/AlGaAs heterostructure2DEG 90 nm deepns = 2.9 x 1011 cm-2

Few-electron double dotTransport through dots

-0.96

-1.02

-0.15 -0.30

00

10

01

11

2221

12

VL

(V)

V PR(V)

1 pA

2 pA

70 pA

Peak height

J.M. Elzerman et al., PRB 67, R161308 (2003)

Tunnel process is stochastic

0.0 0.5 1.0 1.5

0.0

0.5

1.0

0.0 0.5 1.0 1.5

0.0

0.5

1.0

IQ

PC (

nA)

Time(ms) Time(ms)

inout

out

Histograms tunnel timeI

QP

C [

a.u.

]

~ (60 s)-1

0.0 0.5 1.0 1.5-1

0

1

2

3

IQ

PC (

a.u

.)

Time (ms)

~ (230 s)-1

Increase tunnelbarrier

0.0 0.5 1.0 1.5-1

0

1

2

3

Time (ms)

More spin-down traces

Time (ms)

0 1.5

IQ

PC (

nA)

0

1

2

1.00.5

treadtwait

thold

Read-out characterization

spin:

“down”

“up”

outcome:

Characterization: = Pr [“down” if ]

0.6 1.0Threshold (nA)

0.80.0

1.0

0.8

0.6

0.4

0.2

Time (ms)

0 1.00.5 1.5

IQ

PC (

nA)

0

1

2

Waiting time (ms)

Spi

n do

wn

frac

tion

0.0 0.5 1.0 1.5 12

0.1

0.2

0.3

p ) exp(- t / T1) +

Characterization: = Pr [“up” if ]

Threshold (nA)

0.0

1.0

0.8

0.6

0.4

0.2

0.0 0.5 1.0 1.5 2.0

Time (ms)

0

1

IQ

PC (

nA)

2 = Pr [ miss step ]

=1/T1

1/T1 +

11 + T1

1 = Pr [ flips before tunneling ] 12

1

0.6 1.0 0.8

Finding the spin read-out regime

gl = gd

Alternative spin read-out schemes (2)

needgl gd

gl exchange enhanced

(2 DEG, Englert et al, von Klitzing et al)

EF

Etriplet > Esinglet

(Tarucha et al,

Loss et al)

N=2

Vandersypen et al, Proc. MQC02, see quant-ph/0207059

Alternative spin read-out schemes

| = (| - |) + (| + |) = |S + |T0

Engel et al, PRL, to appear (cond-mat/0309023)See also: Ono et al, Science, 2002

Weakly coupled dots

-900

-867

-1100-1108 -800

-100

0

Left gate (mV)QPC gate (mV)

Rig

ht g

ate

(mV

)

dIQPC/dVPR

B// = 6 Tesla40

00

11

10

01

20

2131

30

1202

2232

1303

2333

42

1404

2434

Strongly coupled dots

-967

-933

-1167-1000 -700

-116

7

dIQPC/dVPR

B// = 6 Tesla

Left gate (mV)QPC gate (mV)

Rig

ht g

ate

(mV

)

00

= 15 s

300

18090

45

VM (V)

lock

-in s

igna

l (ar

b.un

its)

-1.12 -1.13

VM (V)-1.07 -1.40V

R (

V)

-0.76

-0.96

f = 4.17 kHz

0

1

2

345678

7 6 5 4 32

Electron response reveals tunnel rate

dip

heig

ht (

%)

0

100

3700 (s)

•Electron response (dip) disappears for high frequencies (small )

•Dip half-developed when

•Top: barrier to drain closed

•Right: barrier to reservoir closed

•Middle: both closed

N = 1N = 2 N = 1N = 2

-1.160 -1.175VM (V)-1.160 -1.175VM (V)1

10

VP (

mV

)

S

S

eff

EST

f = 385 Hz f = 1.538 kHz

Singlet-triplet and Zeeman for N = 2

1

10

VP (

mV

)