Self-Paced Learning for Semantic Segmentation

Post on 09-Feb-2016

68 views 0 download

Tags:

description

Self-Paced Learning for Semantic Segmentation. M. Pawan Kumar. Self-Paced Learning for Latent Structural SVM. M. Pawan Kumar. Benjamin Packer. Daphne Koller. Aim. To learn accurate parameters for latent structural SVM. Input x. Output y  Y. Hidden Variable h  H. “Deer”. - PowerPoint PPT Presentation

Transcript of Self-Paced Learning for Semantic Segmentation

Self-Paced Learning forSemantic Segmentation

M. Pawan Kumar

Self-Paced Learning forLatent Structural SVM

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.

Daphne Koller

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.

Benjamin Packer

M. Pawan Kumar

AimTo learn accurate parameters for latent structural SVM

Input x

Output y Y

“Deer”

Hidden Variableh H

Y = {“Bison”, “Deer”, ”Elephant”, “Giraffe”, “Llama”, “Rhino” }

AimTo learn accurate parameters for latent structural SVM

Feature (x,y,h)(HOG, BoW)

(y*,h*) = maxyY,hH wT(x,y,h)

Parameters w

Motivation

Real Numbers

Imaginary Numbers

eiπ+1 = 0

Math is forlosers !!

FAILURE … BAD LOCAL MINIMUM

Motivation

Real Numbers

Imaginary Numbers

eiπ+1 = 0

Euler wasa Genius!!

SUCCESS … GOOD LOCAL MINIMUM

MotivationStart with “easy” examples, then consider “hard” ones

Easy vs. Hard

Expensive

Easy for human Easy for machine

Simultaneously estimate easiness and parametersEasiness is property of data sets, not single instances

Outline

• Latent Structural SVM

• Concave-Convex Procedure

• Self-Paced Learning

• Experiments

Latent Structural SVM

Training samples xi

Ground-truth label yi

Loss Function(yi, yi(w), hi(w))

Felzenszwalb et al, 2008, Yu and Joachims, 2009

Latent Structural SVM

(yi(w),hi(w)) = maxyY,hH wT(x,y,h)

min ||w||2 + C∑i(yi, yi(w), hi(w))

Non-convex Objective

Minimize an upper bound

Latent Structural SVM

min ||w||2 + C∑i i

maxhiwT(xi,yi,hi) - wT(xi,y,h)

≥ (yi, y, h) - i

Still non-convex Difference of convex

CCCP Algorithm - converges to a local minimum

(yi(w),hi(w)) = maxyY,hH wT(x,y,h)

Outline

• Latent Structural SVM

• Concave-Convex Procedure

• Self-Paced Learning

• Experiments

Concave-Convex Procedure

Start with an initial estimate w0

Update

Update wt+1 by solving a convex problem

min ||w||2 + C∑i i

wT(xi,yi,hi) - wT(xi,y,h)≥ (yi, y, h) - i

hi = maxhH wtT(xi,yi,h)

Concave-Convex Procedure

Looks at all samples simultaneously

“Hard” samples will cause confusion

Start with “easy” samples, then consider “hard” ones

Outline

• Latent Structural SVM

• Concave-Convex Procedure

• Self-Paced Learning

• Experiments

Self-Paced Learning

REMINDER

Simultaneously estimate easiness and parametersEasiness is property of data sets, not single instances

Self-Paced Learning

Start with an initial estimate w0

Update

Update wt+1 by solving a convex problem

min ||w||2 + C∑i i

wT(xi,yi,hi) - wT(xi,y,h)≥ (yi, y, h) - i

hi = maxhH wtT(xi,yi,h)

Self-Paced Learning

min ||w||2 + C∑i i

wT(xi,yi,hi) - wT(xi,y,h)≥ (yi, y, h) - i

Self-Paced Learning

min ||w||2 + C∑i vii

wT(xi,yi,hi) - wT(xi,y,h)≥ (yi, y, h) - i

vi {0,1}

Trivial Solution

Self-Paced Learning

vi {0,1}

Large K Medium K Small K

min ||w||2 + C∑i vii - ∑ivi/K

wT(xi,yi,hi) - wT(xi,y,h)≥ (yi, y, h) - i

Self-Paced Learning

vi [0,1]

min ||w||2 + C∑i vii - ∑ivi/K

wT(xi,yi,hi) - wT(xi,y,h)≥ (yi, y, h) - i

Large K Medium K Small K

BiconvexProblem

AlternatingConvex Search

Self-Paced LearningStart with an initial estimate w0

Update

Update wt+1 by solving a convex problem

min ||w||2 + C∑i vii - ∑i vi/K

wT(xi,yi,hi) - wT(xi,y,h)≥ (yi, y, h) - i

hi = maxhH wtT(xi,yi,h)

Decrease K K/

Outline

• Latent Structural SVM

• Concave-Convex Procedure

• Self-Paced Learning

• Experiments

Object Detection

Feature (x,y,h) - HOG

Input x - Image

Output y Y

Latent h - Box

- 0/1 Loss

Y = {“Bison”, “Deer”, ”Elephant”, “Giraffe”, “Llama”, “Rhino” }

Object Detection

271 images, 6 classes

90/10 train/test split

4 folds

Mammals Dataset

Object DetectionCCCP Self-Paced

Object DetectionCCCP Self-Paced

Object DetectionCCCP Self-Paced

Object DetectionCCCP Self-Paced

Objective value Test error

Object Detection

4

4.2

4.4

4.6

4.8

5

Fold1 Fold2 Fold3 Fold4

CCCPSPL

0

5

10

15

20

25

Fold1 Fold2 Fold3 Fold4

CCCPSPL

Handwritten Digit Recognition

Feature (x,y,h) - PCA + Projection

Input x - Image

Output y Y

Y = {0, 1, … , 9}

Latent h - Rotation

MNIST Dataset

- 0/1 Loss

Handwritten Digit Recognition

- Significant Difference

C

C

C

SPL

Handwritten Digit Recognition

- Significant Difference

C

C

C

SPL

Handwritten Digit Recognition

- Significant Difference

C

C

C

SPL

Handwritten Digit Recognition

- Significant Difference

C

C

C

SPL

Motif Finding

Feature (x,y,h) - Ng and Cardie, ACL 2002

Input x - DNA Sequence

Output y YY = {0, 1}

Latent h - Motif Location

- 0/1 Loss

Motif Finding

40,000 sequences

50/50 train/test split

5 folds

UniProbe Dataset

Motif FindingAverage Hamming Distance of Inferred Motifs

SPL SPL

SPLSPL

Motif Finding

020406080

100120140160

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

CCCPCurr

Objective Value

SPL

Motif Finding

01020304050

Fold1

Fold2

Fold3

Fold4

Fold5

CCCPCurr

Test Error

SPL

Noun Phrase Coreference

Feature (x,y,h) - Yu and Joachims, ICML 2009

Input x - Nouns Output y - Clustering

Latent h - Spanning Forest over Nouns

Noun Phrase Coreference60 documents

50/50 train/test split 1 predefined fold

MUC6 Dataset

Noun Phrase Coreference

- Significant Improvement

- Significant Decrement

MITRELoss

PairwiseLoss

Noun Phrase Coreference

MITRELoss

PairwiseLoss

SPL

SPL

Noun Phrase Coreference

MITRELoss

PairwiseLoss

SPL

SPL

Summary• Automatic Self-Paced Learning

• Concave-Biconvex Procedure

• Generalization to other Latent models– Expectation-Maximization– E-step remains the same– M-step includes indicator variables vi

Kumar, Packer and Koller, NIPS 2010