River Geometry and Mechanicspierre/ce_old/classes/CE716/Peru... · Inner delta Niger river basin...

Post on 16-Oct-2020

2 views 0 download

Transcript of River Geometry and Mechanicspierre/ce_old/classes/CE716/Peru... · Inner delta Niger river basin...

1

Pierre Y. Julien

River Geometry and Mechanics

Department of Civil and Environmental Engineering

Colorado State University

Fort Collins, Colorado

River Mechanics and Sediment Transport

Lima Peru – January 2016

Objectives

Brief overview of stream restoration and river rehabilitation guidelines:

1. Hydrology and Hydraulics;

2. Extreme River Floods;

3. Climate Change Impact on Rivers;

4. River Geometry;

5. Flow Pulses Downstream of Reservoirs.

2

1. Hydrology and Hydraulics

Niger River Inner delta Niger river basin

BamakoKoulikoro Niamey

Niger R.

Ban

i R.

Tchad LakeMopti

Guinea Gulf0 200 400 km

Lakoja

Sokoto R.

Benue R.

Arid Semiarid Dry subhumid Moist subhumid Humid Perhumid

Arid

Humid

Climate

Tombouctou

Malanville

Kaduna R.

(a)

3

Surface runoff divide

Groundwater divide

Groundwater flow

Subsurface flow

Channel precipitation

Interception

Transpiration

Evaporation

Infiltration

Deep percolation

Snow

Surface-detention storage

Precipitation

Surface runoff

Evaporation

Exfiltration

Condensation

20 10 0 10 20

40 30 20 10 0 10 20 30 400

5

10

15

20

25

30

35

40

45

50

55

60

18

16

14

12

10

8

6

4

2

0

Storm Mountain Big

Thompson River

Distance from Storm Mountain (km)

Alt

itud

e ab

ove

mea

n se

a le

vel (

thou

sand

s of

fee

t)

Distance from Storm Mountain (miles)

Alt

itud

e ab

ove

mea

n se

a le

vel (

thou

sand

s of

met

ers)

-25 °C

0 °C

1525

3545

4535

2515

15

Schematic lines of airflow

Schematic area of rainfall

Radar reflectivity observed at Grover, Colo. Dashed where approximately located. Interval 10 dBZ

Line of equal air temperature, in degrees Celsius Dashed within the cloud

Loveland

Basin boundary

Glen Haven

Glen Comfort

Estes Park

Mouth of Big Thompson Canyon

Ft. Collins

Loveland powerplant

Big Thompson River

Little Thompson River

South P

latte

River

0 5 10 miles

0 5 10 15 km

2 4 6 10

64

2

2

8

6

8

10

46

8

108

2

Masonville

02468

1012

Rai

nfal

l pre

cipi

tati

on

(inc

hes)

Drake

4

AGU Hydrology days 2005

Rainfall distribution of Typhoon Maemi in Korea

Total rainfall of Typhoon Maemi in 2003

5

Water stage and discharge graph at Gupo bridge

6

Dis

char

ge

Time

Without reservoirs

With reservoirs

Reservoir storage - release

Design flood

2 3 4 5 10 25 50 1006

5

4

3

2

11 510 20 40 60 80 90 95 99

Return period (years)

Probability (%)

Dis

char

ge

All da

ta

With

out r

eser

voir

With reservoir

A

T T

T

T

1 2

3

4

Peak discharge reduction

20 000

10 000

5 000

1 000

500

2000.05

0.10.5 1 2 5 10 30 50 70 90 95 96

9999.8

99.9

Before

AfterDominant discharge

Duration of discharge (% time)

Mea

n da

ily

disc

harg

e (c

fs)

AfterBefore

Q

Q

S

s

250

200

150

100

50

01940 1950 1960 1970 1980

Year

Sand

Silt

Clay

Sus

pend

ed s

edim

ent l

oad

(mil

lion

s to

ns/y

ear)

Clear water release at dam

Original bed

Scour and channel degradation Local scour Final bed

(c)

(b)

(a)

1 m /s = 35.5 ft /s33

7

2. Extreme River Floods

14

Analysis of Extreme Floods in Malaysia

Pierre Y. JulienColorado State University

International Symposium on Flood Research and Management 2014ISFRAM 2014

Sabah, BorneoSeptember 28-October 1, 2014

8

15

Floods in Malaysia (2006/2007)

YEAR STATES NOTE SOURCES

2007

Johor, Pahang, Kuala 

Lumpur, Kedah, Negeri 

Sembilan, Kelantan

RM 1.2 Billion (USD 400 Million)

260,000 people were evacuated from more 

than 40,000 families

Shafie (2009); MMD (2007)

2008

Negeri Sembilan, Kuala 

Lumpur, Pulau Pinang, 

Kelantan, Terengganu, 

Pahang

Major roads effected

Landslide

Over 6,000 people evacuated to 40 flood 

evacuation centers

MMD (2008)

2009Kuala Lumpur, Kelantan, 

Kedah, Selangor, Pahang

Severe traffic congestion

Landslide

About 60 families were evacuated

MMD (2009)

2010Most of the states in 

Peninsular Malaysia

More than 70,000 people were evacuated

Traffic jams and water depth more than 1.0 mMMD (2010)

2011Most of the states in 

Peninsular Malaysia

More than 70,000 people were evacuated

Traffic jams and water depth more than 1.0 m

Taucan et al. (2011); Utusan (2011); 

Maslih et al. (2011); Ismail (2011); 

Abdullah (2011); Md.‐Noor (2011); Mohd 

and Perimbanayagam (2011)

2012Most of the states in 

Peninsular Malaysia

More than 5,000 people were evacuated and 

600 houses were submerged

Water depth approximately reached 2.0 m at 

most of the places

Utusan (2012); Jamaluddin and Hassan 

(2012); Maslih (2012); Sinyang (2012); 

Wan‐Alias (2012); Cameons and Wong 

(2012); myMetro (2012); Md.‐Noor (2012)

Flooding in Peninsular Malaysia from 2007 to 2012

16

9

Extreme Floods in Malaysia

1. Extreme Rainfall Precipitation

2. Extreme Flood Modeling

3. Kota Tinggi Flood

4. Muda River Flood

5. River Management Manual

17

Rainfall Events in Malaysia Malaysia receives between 2000 and 4000 mm of rainfall per year

18

0

10

20

30

40

50

60

70

80

90

100

1 17 33 49 65 81 97 113

129

145

161

177

193

209

225

241

257

273

289

305

321

337

353

Rainfall (mm)

2010

10

CDF for Subang Station

19

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100 120 140 160 180 200

F(x)

Total Amount of Precipitation (mm)

2‐consecutive rainy days 3‐consecutive rainy days

4‐consecutive rainy days 5‐consecutive rainy days

6‐consecutive rainy days 1‐rainy day

1‐rainy day 2‐consecutive rainy days

3‐consecutive rainy days 4‐consecutive rainy days

5‐consecutive rainy days 6‐consecutive rainy days

From Shazwani Nur Muhammad

Conditional Probability of Multi‐Day Rainfall Events at Subang Station

20From Shazwani Nur Muhammad

11

Return Period Curves from Measured & Improved Probability Structure

21

1

10

100

1000

10000

0 1 2 3 4 5 6 7 8 9 10

Return Period (Days)

n‐Consecutive Rainy Days

>1 >13 >30>60 >90 >120>150 >180 Calculated >1Calculated >13 Calculated >30 Calculated >60Calculated >90 Calculated >120 Calculated >150

From Shazwani Nur Muhammad

22

Extreme Rainfall Events 

12

Extreme Floods in Malaysia

1. Extreme Rainfall Precipitation

2. Extreme Flood Modeling

3. Kota Tinggi Flood

4. Muda River Flood

5. River Management Manual

23

Hydrological sub‐models are:

Rainfall and interception

Depression storage and infiltration

Overland flow routing (2D diffusive wave approximation)

Channel flow (1D diffusive wave approximation)

TREX model (Hydrological model)

11

24

13

25

TREX Model California Gulch near Leadville, Colorado25

Extreme Floods in Malaysia

1. Extreme Rainfall Precipitation

2. Extreme Flood Modeling

3. Kota Tinggi Flood

4. Muda River Flood

5. River Management Manual

26

14

27

Modeling set‐upFrom GIS

Area : 1,635 sq. kmGrid size : 230 x 230 mRiver length : 250 kmActive grid: 30,000

GIS – watershed delineation

22

From Jazuri Abdullah

15

PLANTATION(OIL PALM)

URBANIZATION

TROPICAL RAIN FOREST

23From Jazuri Abdullah

CALIBRATIONGRAPHICAL METHOD

27

16

JANUARY 11, 2007 JANUARY 12, 2007

JANUARY 13, 2007 JANUARY 14, 2007

SATELLITE IMAGES – RAINFALL AT KOTA TINGGI

SOU

RC

E: S

HA

FIE

(200

9)

33

Rainfall near Kota Tinggi

32

Date Layang‐Layang Ulu Sebol Bukit Besar Kota Tinggi

December 2006

17‐Dec 66 mm 33 mm 29 mm 48 mm

18‐Dec 52 mm 23 mm 47 mm 43 mm

19‐Dec 156 mm 189 mm 200 mm  161 mm

20‐Dec 73 mm 78 mm 69 mm 39 mm

4 days total 367 mm 353 mm 345 mm 287 mm

January 2007

11‐Jan 145 mm 124 mm 147 mm 167 mm

12‐Jan 135 mm 290 mm 234 mm 122 mm

13‐Jan 84 mm 76 mm 42 mm 49 mm

14‐Jan 20 mm 44 mm 35 mm ‐

4 days total 384 mm 534 mm 458 mm 338 mm

17

KOTA TINGGI FLOOD

DEC. 18, 2006

DEC. 19, 2006

KOTA TINGGI FLOOD

18

DEC. 20, 2006

KOTA TINGGI FLOOD

DEC. 21, 2006

KOTA TINGGI FLOOD

19

37

Extreme Floods in Malaysia

1. Extreme Rainfall Precipitation

2. Extreme Flood Modeling

3. Kota Tinggi Flood

4. Muda River Flood

5. River Management Manual

38

20

DEM

October 1998 Flood

Flood Prone Areas (Oct 1998 Flood)

Flood Map

21

Land Use Data

River Corridor

KG. BUMBUNG LIMA

PEKULA

KG. JAWA

KG. BUKIT

LALANG

Merdeka Bridge

PLUS Highway

42

22

Sand and Gravel Mining

River Sand Mining

43

Riverbed Degradation

44

23

Extreme Floods in Malaysia

1. Extreme Rainfall Precipitation

2. Extreme Flood Modeling

3. Kota Tinggi Flood

4. Muda River Flood

5. River Management Manual

45

River Management

Problems and Issues

Flood Control and Dam SafetyNavigation and Transportation

Water SupplyIrrigation and Drainage

Water QualityAquatic Habitat

Laws and Regulations

International TreatiesWater Delivery Compacts

Water RightsClean Water Act

Endangered Species Act

Major Stakeholders

Federal AgenciesState Agencies

Counties and DistrictsCities and Towns

Private Sector/CompaniesPublic

Technical

Nat

ion

al

46

24

47

Summary and Conclusions

1. Extreme Rainfall Precipitation

Recent advances in the frequency analysis of multi-day rainfall events

2. Extreme Flood Modeling

Distributed models like TREX can simulate extreme floods

3. Kota Tinggi Flood

Multi-day rainfall precipitation events control floods on large watersheds

4. Muda River Flood

Concept of river corridor and problems associated with gravel mining

5. River Management Manual

Major step towards Integrated River Basin Management

25

3. Climate Change Impact on Rivers

Prospective Impact of Climate Change on Rivers and Water Resources

Pierre Y. JulienColorado State University

7th World Water Forum Daegu, South Korea, April 2015

26

“ … four glaciations were recognized, each lasting approximately 100,000 years…

the maximum ice thickness was close to 4,000 metres”

The Canadian Encyclopedia

Upper Elevation: flooding from snowmelt

-----------------------------

Lower Elevation: flooding from thunderstorms

Rainfall vs Snowmelt

27

Upper Basin: high-elevation snowpack; snowmelt runoff

Diverse Topography: highest mountains in Colorado – Elbert, Massive, Harvard, etc.

Pine beetle and the Colorado Forest

Upper Basin: high-elevation snowpack; snowmelt runoff

Diverse Topography: highest mountains in Colorado – Elbert, Massive, Harvard, etc.

Waldo FireColorado June 2012

28

Waldo FireColorado June 2012

Impact on water quality

29

Sediment Plugs on the Rio Grande

Where did the water go?

30

California Imposes First Mandatory Water Restrictions to Deal With Drought

PHILLIPS, Calif. — Gov. Jerry Brown on Wednesday ordered mandatory water use reductions for the first time in California’s history, saying the state’s four-year drought had reached near-crisis proportions after a winter of record-low snowfalls.

Oroville Lake, April 2015

31

La Guardia Intl. Airport October 2012

32

warm oceans => stronger hurricanes

Katrina, August 2005

A category 5 hurricane

33

New Orleans in August 2005 after Hurricane Katrina Damage $108 billions

34

Heavy rains on saturated soils after a snow-heavy winter

Cedar Rapids, IA, June 2008

Cedar Rapids, IA, June 2008

35

Precipitation Peak Inflow

1938 Design – Original 13 inches 430,000 cfs1982 Update 20 inches 1,086,000 cfs

2014 Update 18 inches 1,564,000 cfs

From K. White, USACE, ETL 1100-2-1 https://corpsclimate.us

36

Impact of Katrina

on wetlands

4. River Geometry

37

Objectives

Bedforms and resistance to flow during floods.

Effects of dams on hydraulic geometry.

River response to deviations from equilibrium geometry of alluvial rivers.

Rhine River flood in 1998

38

Bovenrijn

0.0

0.5

1.0

1.5

2500 5000 7500 10000Discharge (m3/s)

pri

mar

y d

un

e h

eig

ht

(m)

CenterLeft Right

Waal

0.0

0.2

0.4

0.6

2000 4000 6000 8000Discharge (m3/s)

Primary dune height vs discharge

Bovenrijn

0.0

0.2

0.4

0.6

2500 5000 7500 10000Discharge (m3/s)

Ro

ug

hn

ess

hei

gh

t (m

)

Center

Left

Right

Waal

0.0

0.1

0.2

0.3

2000 4000 6000 8000Discharge (m3/s)

Roughness height vs discharge

39

Darcy-Weisbach f vs discharge

Bovenrijn

0.02

0.03

0.04

0.05

2500 5000 7500 10000Discharge (m3/s)

Dar

cy-W

eisb

ach

f

centerLeft Right

Waal

0.02

0.03

0.04

0.05

2000 4000 6000 8000Discharge (m3/s)

Manning n vs discharge

Bovenrijn

0.02

0.03

0.04

2500 5000 7500 10000Discharge (m3/s)

Man

nin

g n

CenterLeft Right

Waal

0.02

0.03

0.04

2000 4000 6000 800Discharge (m3/s)

Man

nin

g n

40

Downstream Hydraulic Geometry of the Rio Grande, New Mexico

41

Cochiti Dam

N

42

0

100

200

300

400

500

600

700

189

5

190

5

191

5

192

5

193

5

194

5

195

5

196

5

197

5

198

5

199

5

An

nu

al P

eak

Flo

w (

m3 /s

)

Otowi Gage - Upstream of Dam

Cochiti Gage - Downstream of Dam

1973 - Cochiti Dam Closed

Peak Annual Discharge

Annual Average Daily Sediment Concentration

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

1956

1958

1960

1962

1964

1966

1968

1970

1972

1974

1976

1978

1980

1982

1984

1986

1988

1990

1992

1994

Year

Annual

Ave

rage

Dai

ly S

edim

ent

Con

centr

atio

n (

mg/L

)

Otowi Gage - Upstream of Dam

Cochiti Gage - Downstream of dam

Bernalillo Gage - Reach Outflow

Albuquerque - Reach Outflow

1973 - Cochiti Dam Closed

43

1992 Ac tive Ch anne lSu brea ch d e lin eationReach de lineation

N

C ochiti R eachR io G rand e, N ew M ex ico

0 2 4 6 8 10 Kilo m eter s

1.1

1.92.1

4.6

3.54.1

3.1

2.6

26 Subreaches

284 Cross sections

4 Reaches

Cross section CO-2

5208

5210

5212

5214

5216

5218

5220

5222

5224

0 100 200 300 400 500

Distance from left bank reference point (ft)

Ele

vati

on

(ft

)

Nov-75

Apr-79

Jul-79

Jan-80

Jul-92

Aug-952.1 miles

dowstream from Cochiti Dam

44

Cross section CO-18

5102

5104

5106

5108

5110

5112

5114

5116

5118

0 50 100 150 200 250 300 350

Distance from left bank reference point (feet)

Ele

vati

on

(fe

et)

Nov-75Apr-79Jul-79Jan-80Oct-82Nov-83Nov-86Jul-92Aug-95

17 miles downstream from

Cochiti Dam

Cross section CO-24

5066

5068

5070

5072

5074

5076

5078

5080

5082

0 200 400 600 800 1000 1200

Distance from left bank reference point (feet)

Ele

vati

on

(fe

et)

Nov-75Apr-79Jul-79Jan-80Oct-82Nov-83Jul-92Aug-95

22.5 miles downstream from Cochiti Dam

45

Change in Mean Bed Elevation

-1.6

-1.4

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

CO-line Number

Chan

ge

in M

ean B

ed E

leva

tion (m

)

Reach 1 Reach 2 Reach 3 Reach 4

Bed material size

0.1

1

10

100

Reach 1 Reach 2 Reach 3 Reach 4

Med

ian

bed

mat

eria

l siz

e, d

50 (

mm

)

1918193519491962197219851992Gravel

Sand

46

Sinuosity

1.00

1.05

1.10

1.15

1.20

1.25

Reach 1 Reach 2 Reach 3 Reach 4

Sinu

osity

1918193519491962197219851992

Active channel width

0

50

100

150

200

250

300

350

Reach 1 Reach 2 Reach 3 Reach 4

Reac

h Av

erag

ed A

ctiv

e Ch

anne

l Wid

th (

m)

1918

1935

1949

1962

1972

1985

1992

47

1935 1972 1992

N

Planform geometry

Planform AdjustmentsBraided Meandering

48

Lateral Adjustments

0

50

100

150

200

250

300

350

400

0 50 100 150 200 250 300 350 400

Active Channel Width from Aerial Photos (m)

Pre

dic

ted

Eq

uil

ibri

um

Wid

th (

m)

J & W

S & A (coarsematerial)

S & A (sandbed & banks)

Lacey

Perfect Agreement

Equilibrium?Hydraulic Geometry Equations

49

0

50

100

150

200

250

300

350

400

0 100 200 300 400

Active Channel Width (m)

Eq

uil

ibri

um

Wid

th (

m)

(Ju

lien

-War

gad

alam

199

5) 1918

1935

1949

1962

1972

1985

1992 19181992

Hydraulic Geometry Equations

(Julien & Wargadalam 1995)

Modeling Lateral Movement

Deviation from Equilibrium

kteoe eWWWW

eWWkdt

dW

)( eWWkM

50

0

1000

0 50 100 150 200Time

Wid

th

Equilibrium Width = We

kteoe eWWWW

eWWkdt

dW

Modeling Width ChangeDeviation from equilibrium width

Exponential Model Results

0

50

100

150

200

250

300

350

1915 1935 1955 1975 1995 2015

Time (years)

Ac

tiv

e c

ha

nn

el

wid

th (

m) Observed

PredictedEquilibrium Width from J-W

r2 = 0.96

Reach 1

0

50

100

150

200

250

300

350

1915 1935 1955 1975 1995 2015

Time (years)

Ac

tiv

e c

ha

nn

el

wid

th (

m)

r2 = 0.91

Reach 2

0

50

100

150

200

250

300

350

1915 1935 1955 1975 1995 2015

Time (years)

Ac

tiv

e c

ha

nn

el

wid

th (

m)

r2 = 0.98

Reach 3

0

50

100

150

200

250

300

350

1915 1935 1955 1975 1995 2015

Time (years)

Ac

tiv

e c

ha

nn

el

wid

th (

m)

r2 = 0.81

Reach 4

51

Conclusions

Bedforms affect resistance to flow and Manning n can increase during floods.

The effects of Cochiti Dam on the Rio Grande are primarily degradation and armouring. There is relatively little effect on channel width.

The rate of change in channel width is proportional to the deviation from the equilibrium channel width.

5. Flow Pulses Downstream of Reservoirs

52

Hapcheon Re-regulation Dam

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

time (hr)

wat

er d

epth

(m

)

Plan view from Main dam to Re-regulation dam

Main Dam

Re-regulation Dam

Main Power Station

Diversion Tunnel

119 m3/s during 3 hr per day

20 m3/s during 24 hr per day

Spillway

0

20

40

60

80

100

120

0 50 100 150 200 250

Time (hour, Jul y 01 2005, 01:00 - Ju ly 10 2005, 24:00)

Flo

w rate

(m

3/s)

Discharge at main dam

Discharge at re-regulation dam

53

Study Reach

Hapcheon Main Dam

Re-regulation Dam

Nakdong River

Study Reach = 45 km

Hapcheon city

Degradation and armouring

40 km

37

39

41

43

45

47

49

0 100 200 300 400 500 600

width (m)

bed

elev

atio

n (m

)

1983

2003

54

1 0 1 Kilometers

N

Sub-reach 1

Sub-reach 2

Sub-reach 3

Variation of Non-vegetated Active Channel

Planform

1982

1993

2004

Variation of Non-vegetatedActive Channel Width

0

100

200

300

400

500

600

700

051015202530354045

Distance from the confluence with the Nakdong River (km)

Active c

hannel w

idth

(m

)

1982

1993

2004

1982_avg.

1993_avg.

2004_avg.

55

River changes below Hapcheon dam

2004

2007

1983

0.1

1

10

100

051015202530354045

Distance from the confluence (km)

Par

ticl

e si

ze, d

m (

mm

)

198319932003

Median Bed Material Size (d50) along the study reach

Sub-reach 1 Sub-reach 2 Sub-reach 3

56

Lake Borgne Surge Barrier, New Orleans, LA

~ $10 billion … too much or not enough?

ACKNOWLEDGMENTSDr. John England, USBR and RMCDr. Mark Velleux, HDRDr. Jazuri Abdullah, UiTMDr. Shazwani N. Muhammad, UKMDr. Sahol Abu Bakar, UiTMAtikah Shafie, DID MalaysiaDr. Junaidah Ariffin, UiTMDr. Kate White, CRRELPatrick O’Brien, CRREL and ERDC… so many others …

MuchasGracias!

pierre@engr.colostate.edu

57

Thank You!pierre@engr.colostate.edu