Revision Package BT1 2013 Solutions

Post on 13-Apr-2015

76 views 14 download

description

answer for revision package from schools around asia where the autor is eng kai seng

Transcript of Revision Package BT1 2013 Solutions

2013 Revision Package BT1 Solutions

Chapter 2: Binomial Expansion Solution

1 [AJC/2005/Prelim/P1/Q3]

Solution

( )( )

( )( ) ( )

( )

( )

++++=

++++

++++=

+++++=

+−

−−

−−

+−

−−

+−

−+

+=

−+=−

+ −

32

32

32

32

3

2

2

1

42

521

2

32

5

2

31

2

5

2

311

2!3

22

11

2

1

2

1

2!2

12

1

2

1

22

11

1

21121

1

xxx

xxx

xxx

xxxx

x

xx

x

xxx

x

The series is valid for 2

112 <⇒< xx

When 11

1=x ,

11

4

3

11

11

12

11

9

11

12

11

121

111

1

21

1=×==

+=

+

x

x

32.3

3209

10648

2662

3209411

11

14

11

1

2

5

11

121

11

432

÷≈

+

+

+

+= �

2 [TJC/2005/Prelim/P1/Q7]

Solution

2013 Revision Package BT1 Solutions

( )( )

( ) ( )( ) ( )22

22

2

12111232

1

2112112

1123

xCxBAxxx

x

C

x

BAx

xx

xx

++−+=−+

−+

+

+=

−+

−+

When 2

1=x ,

2

1

4

11

4

111

2

123

2

1

=

++=

+

C

C

When 0=x , ( ) ( )

1

12

11

2

3

=

+=

B

B

When 1=x , ( ) ( )( ) ( )

3

112

12111123

2

1

=

++−+=−+

A

A

( )( ) ( )xx

x

xx

xx

212

1

1

13

2112

112322

2

−+

+

+=

−+

−+

( )( ) ( )

( )( ) ( )

( )( ) ( )

��

��

+++=

+++++−+=

+++++−+=

−+++=

−+

+

+=

−+

−+

−−

2

22

22

112

22

2

42

3

22

113

4212

1113

212

1113

212

1

1

13

2112

1123

xx

xxxx

xxxx

xxx

xx

x

xx

xx

The expansion is valid for 2

112x and 12 <⇒<< xx

3 [RJC/2005/Prelim/P1/Q5]

Solution

2013 Revision Package BT1 Solutions

( )

++−+=

++−+=

+

+

+

+=

+=+

32

32

32

2

1

2

1

512

1

64

1

4

12

1024

1

128

1

8

112

4!3

22

11

2

1

2

1

4!2

12

1

2

1

42

112

4124

yyy

yyy

yyy

yy

The expansion is valid for 414

<⇒< yy

Let 28 kxxy +=

( ) ( )

( ) ( ) ( )

( ) ( )

��

���

++−=

+++++−=

++++−++=

++−+=

+=++

33

34232

32222

32

2

1

2

12

4

512512

11664

64

1

8512

18

64

18

4

12

512

1

64

1

4

12

484

xxk

xxkkxx

kxxkxxkxx

yyy

ykxx

4

014

=

=+−

k

k

4 [NYJC/2005/Prelim/P1/Q1]

Solution

( ) �++++=−− 322

43211 xxxx

The expansion is valid for 1<x .

2013 Revision Package BT1 Solutions

12

2

113

expansion into 2

1subst ,

2

14

2

13

2

1213

23

2

3

2

32

11

11

=

−=

=

+

+

+

+=

=

=−

=− ∑∑

x

rr

rr

rr

5 [HCI/2005/Prelim/P1/Q2]

Solution

( )

( ) ( )( )

( )( )( )

+++=

++++=

+

−−−−−

+

−−−+

−−+

=

−=−

−−

32

32

3

21

2

22

8

1

16

3

4

1

2

1

4

31

4

1

2!3

22122

2!2

122

221

4

1

2122

xx

xxx

x

xx

xx

The series is valid for 212

<⇒< xx

.

The term of rx is the ( )th

r 1+ term in the series.

( ) ( )( )( ) ( )

( ) ( )( )( ) ( )( ) ( )

( )22

1

2

1

!

14321

4

1

2!

1222122

4

1 term1

+

+=

+−=

+−−−−−−−=+

r

r

r

rr

r

th

r

xr

rr

x

r

rr

6(i) [CJC/2005/Prelim/P1/Q2]

Solution

2013 Revision Package BT1 Solutions

( )( )( )

( ) ( )( )( )11

11

11

1

11

1f

2

2

23

2

23

3

2

3

+−

−+=

−−+

−+=

−−+

−−=

+−

−−=

xx

x

xxx

x

xxx

xx

xx

xxx

( )( ) ( )( ) ( )22

2

2

2

1111111 ++

++

−=

+−

−=

+−

x

D

x

C

x

B

xx

x

xx

x

( ) ( )( ) ( )111122 −++−++=− xDxxCxBx

When 1=x , ( )4

121

2−=⇒=− BB

When 1−=x , ( )2

1111 =⇒−−=− BD

When 0=x , ( ) ( ) ( )4

31

2

111

2

10

2−=⇒−+−+= CC

( )( )( ) ( ) ( ) ( )22

3

12

1

14

3

14

11

11

1f

++

+−

−−=

+−

−−=

xxxxx

xxx

6(ii) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

2

1 1 2

2 3 2 3 2 3

2 3 2 3 2 3

2 3

f

1 3 11

4 1 4 1 2 1

1 3 11 1 1 1

4 4 2

1 3 11 1 1 1 2 3 4

4 4 2

1 1 1 1 3 3 3 3 1 31 ... ... 2 ...

4 4 4 4 4 4 4 4 2 2

1

x

x x x

x x x

x x x x x x x x x

x x x x x x x x x

x x

− − −

= − − +− + +

= + − − + + +

= + + + + + − − + − + + + − + + − +

= + + + + + − + − + + + − + − +

= + − +

� � �

The series is valid for 1<x .

2005x of ( )xf is the 2006th term of ( ) 11

4

1 −− x + 2006th term of ( ) 1

14

3 −+− x + 2006th term of

( ) 21

2

1 −+ x

( ) ( ) ( ) 200520052005120062005120062005 100210034

3

4

120061

2

11

4

3

4

1xxxxx −=

−+=−+−−

++

Therefore coefficient of 2005x is -1002.

7 [ACJC/2005/Prelim/P1/Q2]

2013 Revision Package BT1 Solutions

Solution

Using sine rule

C

AB

x

ACBC

sin

6sin

4sin

=

+

=ππ

( )

( )( )

( )

+−≈

++−≈

−+

−−≈

+

+−

−−−+

+−−=

+−+=

+−+=

++

+−

=

+

=

+

=

+

=

2

22

222

22

12

12

12

2

2

7312

32

312

23

2312

23

!2

111

2312

2312

2312

32

1

2

sin2

3cos

2

12

1

sin6

coscos6

sin2

1

6sin

4sin

xx

xx

x

xx

xx

xx

xx

xx

xx

xx

xx

xx

xAC

BC

���

��

ππ

π

π

A

B

C4

π x+6

π

2013 Revision Package BT1 Solutions

Chapter 3: Arithmetic & Geometric Progressions Solution

1

(i)

(ii)

(iii)

[RJC/2007/Prelim/P1/Q13]

Solution

Let Sn and Hn denote the amount of savings that Selina and Hebe have at the end of the nth year

respectively.

1000 200n

S n= +

( ) ( ) ( )

( )

( )

2 6

5

5

1000 100 100 1.5 100 1.5 ... 100 1.5

100 1.5 11000

1.5 1

1000 200 1.5 1

n

n

n

n

H−

= + + + + +

−= +

= + −

where 5n >

When n n

H S> ,

( )51000 200 1.5 1 1000 200

nn

−+ − > +

i.e. ( )5200 1.5 1 0

nn

−− − >

From the GC, the value of k is 12.

Let k

u denote the interest that Hebe gets in the kth

year.

Then ( )12 5 1

12100 1.5 1139.0625u

− −= = ,

so Hebe receives $1140 in interest at the end of the 12th

year.

Then for 12n > ,

12

12

1

3

n

nu u

=

.

The total investment yield from the 13th year onwards therefore

cannot exceed 12

12

13

13

1

1 2

uu=

−.

Hence, the maximum value of Hebe’s investment is

12 12

1$4790

2H u+ = (to 3 s.f.).

2 [AJC/2008/Prelim/P2/Q2]

Solution

Let T7, T3, T1 be the seventh, third and first term of an arithmetic series with first term a and

common difference d.

7 3 16 , 2 ,T a d T a d T a= + = + =

2013 Revision Package BT1 Solutions

( ) ( )2

2 2 2

2

2

6 2

6 2

6 4 4

4 2 0

a d a

a d a d

a a d a d

a ad a ad d

d ad

+=

+ +

+ = +

+ = + +

− =

1

3

Since 02

1Common ratio

2 2

ad d

T a ar

T a d a a

≠ ⇒ =

= = = =+ +

Since common ratio < 1, the geometric progression is convergent.

( )

13 1

23 32 1 100

12 4 8 12

9 3 16 1 100 0

2 8 8 2

n

n

nn

nn

− + − − ≥

+ − − − ≥

Using GC, 22.3n ≥ ∴ Least n = 23.

3

(i)

(ii)

[DHS/2008/Prelim/P2/Q4]

Solution

Amount saved in 1st

year = ( )1

36000 $180002

=

9

2904.1

9

20104.1

1000000104.1

)104.1(18000

≥−

≥−

−=

n

n

n

nS

7 6 3

3 3Since 3 3 and

2 4 8

T a d

ad a a a d

= + =

= ⇒ + = ⇒ = =

2013 Revision Package BT1 Solutions

(iii)

30

8.2904.1ln

9

29ln

=∴

=≥

n

n

9 years = 108 months

108 = 21(5) + 3 ∴n = 21

total amount = ( ) ( )21

10000 2 25 20 32

+ +

= $11155

4 [JJC/2008/Prelim/P2/Q1]

Solution

Let the first term of the AP be a and common difference be d.

( )1 2 9 10 11 18

2 T T ... T T T ... T+ + + = + + +

( ) ( )9 9

2 8 9 172 2

a a d a a a d+ + = + + +

[ ]2 2 8 2 26a d a d+ = +

5a d=

16

1

20

20

T

T=

20 15

20

a d

a

+=

20 20

5 20

d

d=

24d =

2d = (reject 2d = − , since a is positive)

Hence, 10a =

5

(i)

(ii)

[NYJC/2008/Prelim/P1/Q4]

Solution

11 1ln( ) ln( ) ln n

n n n n

n

ab b a a

a

++ +

− = − =

.

Since na is a geometric progression, thus 1n

n

ar

a

+ = for all n+∈� . Thus 1 ln( )n n rb b+ − = for all

n+∈� . Thus

nb is an arithmetic progression with common difference ln( )r .

Since nb is an arithmetic progression

2013 Revision Package BT1 Solutions

(iii)

1

1 1

1

1 1

1

1( )

2

1[ln( ) ln( )]

2

1ln( )

2

N

n N

n

N

N

Nb b b

Na a

Naa

+

+=

+

+

+= +

+= +

+=

Since ( )1

1 2 11

lnN

n N

n

b a a a+

+=

= × × ×∑ � , thus

( )

1

1 2 1

1

1

1

21

1exp ln( )

exp

2

N

N n

n

N

N

N

a a a b

N

a

aa

a

+

+=

+

+

+

× × ×

+ =

=

=

∑�

6

(a)

(b)

[TJC/2008/Prelim/P1/Q11]

Solution

(i) S8 = T29

4(2a + 7d) = a + 28d + 98

7a = 98

a = 14

(ii) Given that u14 ≤ 196 and u15 > 196,

14 + 13d ≤ 196 and 14 + 14d > 196

Hence d ≤ 14 and d > 13

i.e. 13 < d ≤ 14.

(i) wn

wn − 1 =

v2n − 1 + v2n

v2n − 3 + v2n − 2 =

ar2n − 2

+ ar2n − 1

ar2n − 4

+ ar2n − 3

= r2

Hence the sequence {wn} is a g.p. with common ratio r2.

(ii) w1 + w3 + w5 + … = 4 + 4r

1 − r4 =

32

15

From GC, r = − 1

2 (since r ≠ −1)

Hence ∑r = 1

∞ vn =

4

1 −

−1

2

= 8

3 .

7

[TPJC/2008/Prelim/P2/Q2]

Solution

2013 Revision Package BT1 Solutions

(a)

(b)

7

( 1) 70

7 ( 1) 70

( 1) 63.......(1)

a

a n d

n d

n d

=

+ − =

+ − =

− =

[2 ( 1) ] 3852

[2(7) ( 1) ] 385.......(2)2

na n d

nn d

+ − =

+ − =

Subt (1) into (2)

(14 63) 770

10

n

n

+ =

=

number of terms = 10

Subt into (1)

9 63

7

d

d

=

=

common difference = 7

Given GP. Common ratio = 1

2

x +− .

If the sum exists, 1

2

x +− < 1

3 1 x− < ≤

S∞ = 4

3

2 4

1 31

2

4 4

3 3

0

x

x

x

=+

− −

=+

=

8 [MJC/2006/Prelim/P1/Q10(a)]

Solution

2013 Revision Package BT1 Solutions

217 3

nS n n= −= −= −= −

2 2

117( 1) 3( 1) 3 23 20

nS n n n n

−−−−= − − − = − + −= − − − = − + −= − − − = − + −= − − − = − + −

2 2

1(17 3 ) ( 3 23 20)

n n nT S S n n n n

−−−−= − = − − − + −= − = − − − + −= − = − − − + −= − = − − − + −

20 6n= −= −= −= −

1

(20 6( 1)) (20 6 ) 6n n

T T n n++++

− = − + − − = −− = − + − − = −− = − + − − = −− = − + − − = −

∴∴∴∴ the series is an A.P. with common difference 6d = −= −= −= −

9 [SRJC/2006/Prelim/P1/Q8]

Solution

Let the first term of the AP be a = 21 h, and the common difference d =

121

605 = h.

(i) ( ) 166121

21

7 =+=+= daT h

(ii) [ ]=+= 12

721

7S 415 hours

(iii) Let ( ) ( )[ ] 60)1(22 12

121 =−+ n

n

( )[ ] 60)1(12 12

1 =−+ nn

( )[ ] 120)1(1121 =−+ nn

1440)1(12 =−+ nnn

01440112 =−+ nn

=±−

=+±−

=2

588111

2

576012111n 32.8 or – 43.8

Hence during the 33rd lesson, Betty will have completed a total of 60 hours.

10 [SAJC/2006/Prelim/P1/Q2]

Solution

GP 1: 2, , ,a ar ar …

( ) ( )

3

31

3 1 1

S

a

r

a r

∞ =

=−

= − �

GP 2: 2 2 2 2 4, , ,a a r a r …

( )

'

2

2

2

9 2

21

aS

a

r

∞ =

=−

Substitute (1) into (2)

2013 Revision Package BT1 Solutions

( )( )( )

( )

29 1 1

1 1 2

2 1 1

1

3

13 1

3

2

r

r r

r r

r

a

−=

+ −

− = +

=

= −

=

11 [TJC/2006/Promo/Q6]

Solution

Given that 2T5 = S2, we have 2ar4 = a + ar, i.e., 2r

4 – r – 1 = 0.

From G.C., r = - 0 .648 or r = 1. (rejected as |r| < 1 for S to exist).

For Sn is within 5% of S, i.e., |Sn – S| < 0.05S ,

we have (1 ) 0.05

1 1 1

na r a a

r r r

−− <

− − − --------------(1)

Since 1

a

r− > 0 (as a > 0 and r = −0 .648), (1) simplifies to

(1 ( 0.648) ) 1 0.05n− − − <

(0.648) 0.05n <

( )lg(0.648) lg 0.05n <

lg(0.05)6.90

lg(0.648)n > = (correct to 3 significant figures)

Hence, minimum value of n is 7.

12

(i)

(ii)

[RJC/2005/Prelim/P1/Q4]

Solution

The first element in the thn row

= 1 2 ... ( 1)2 n+ + + −

=

( )1

22

n n−

The first element in the 10th

row =452 and the first element in the 21

st row =

2102

The sum of all the elements from the 10th to 20th row = 45 46 47 2092 2 2 ... 2+ + + + = ( )45 1652 2 1−

2013 Revision Package BT1 Solutions

13

(a)

(i)

(ii)

(b)

[SAJC/2005/Prelim/P1/Q9]

Solution

Row 1 2 3 … n n+1 n+2 … n+m

No. of tiles 1 3 5 … 2n - 1 2n + 1 2n + 3 …

Total number of tiles

( )

( )( )

2

terms,2,1:

1212

12531

n

nn

n

ndaAP

=

−+=

−++++=

==

��� ���� ���

Extra tiles needed

( ) ( )( )[ ]

[ ]( )mnm

mnm

mnm

+=

−++=

−++=

2

112

211222

square 1 2 3 … n

length

10

5

410

2

5

410

1

5

410

n

Area of nth square

222

1

5

4100

5

410

−−

=

=

nn

( )

2 2 2 2

4 4100 17 0.17

5 5

1 ln 0.172 2 ln 0.8 ln 0.17 2

2 ln 0.8

4.97

n n

n n

n

− −

< ⇒ <

− < ⇒ > +

>

5n =

2013 Revision Package BT1 Solutions

Chapter 4: Series, Sequences, Mathematical Induction

1 [DHS/Prelim/P1/2]

Prove by induction that1

1

(2 1)(2 3) 3(2 3)

n

r

n

r r n=

=+ + +

∑ . [5]

Hence state the value of 1

1

(2 1)(2 3)r r r

= + +∑ . [1]

[Ans: 1/6]

2 [HCI/Prelim/P1/8]

(i) Express 4

( 1) ( 2)

r

r r r

− + in the form

1 2

A B C

r r r+ +

− +. [2]

(ii) Hence find 2

4

( 1) ( 2)

n

r

r

r r r=

− +∑ . [3]

Give a reason why the series is convergent, and state its limit. [2]

Use your answer to part (ii) to find 2

3

( 1)( 3)

n

r

r

r r r=

+ +∑ . [2]

[Ans: (i) 1, 2, 1A B C= = − = ; (ii)1 1 1 1

6 1 2n n n− + +

+ +;

1

6;

1 1 1 1

12 1 2 3n n n− − + +

+ + +]

3 [NJC/2010/Prelim/P2/2(b)]

(i) By expressing ( )

2 7 11

4 !

r r

r

+ +

+ in the form

( ) ( )2 ! 4 !

A B

r r+

+ + where A and B are

real constants, show that ( ) ( )

2

1

7 11 5 5

4 ! 4! 4 !

n

r

r r n

r n=

+ + += −

+ +∑ . [3]

(ii) Use the method of mathematical induction to prove your result in (i). [5]

(iii) Hence, find ( )

2

1

9 19

5 !r

r r

r=

∞ + +

+∑ . [3]

2013 Revision Package BT1 Solutions

[Ans: (i) ( ) ( )

1 1

2 ! 4 !r r−

+ +; (iii)

1

20]

4 The sequence of numbers x1, x2, x3, ... is such that x1 = −2 and xn + 1 =

5

xn − 1.

(i) Find the value of x5 x10 correct to 2 decimal places. [2]

(ii) As n → ∞, xn → θ . Find the exact value of θ . [3]

(ans : (i) 7.40 (ii) 1 1

212 2

− − )

5 (VJC Promo 2008) A sequence of real numbers x1 , x2 , x3 , ... satisfies the relation

xn + 1 = 4 + 15xn − 10

4xn − 4

for n ≥ 1. As n → ∞, xn → l.

(i) By solving x = 4 + 15x − 10

4x − 4 , find the value(s) of l. [3]

(ii) Prove that (xn + 1 − 4)2 − (l − 4)2 = 6 − xn

4xn − 4 . [2]

(iii) Hence show that if xn > l, then xn + 1 < l. [4]

(ans : (i) 6 )

6 (JJC/CT/09)

The rth term of a sequence is given by ur = ( )

1

1r r + for r = 1, 2, 3, … .

(i) Evaluate 1

n

r

r

u=

∑ for n = 1, 2 and 3. By observing the pattern of values, make a

conjecture for a formula for 1

n

r

r

u=

∑ in terms of n. [3]

(ii) Prove, using mathematical induction, your conjecture for 1

n

r

r

u=

∑ in (i), in terms of n.

2013 Revision Package BT1 Solutions

[5]

(iii) Using the formula, evaluate 2

1

1nr

r

u

n=

−∑ . [2]

[Ans: (iii) 1

( 1)n +]

7 [RVHS/2010/Prelim/P1/5]

The sequence of numbers u u u1 2 3, , ,… is given by 1 2u = and 1

2n

n

nu

nu+

+= for all positive

integers.

(i) By writing down the terms 2u and 3u , make a conjecture for nu in terms of n . [2]

(ii) Prove your conjecture by mathematical induction. [4]

(iii) Write down the limit of 1n nu u − as n tends to infinity. [1]

[Ans: (iii) 1]

8 [HCI/Prelim/2010]

The sequence of numbers nu , where n = 0, 1, 2, 3, …, is such that 0u = 2− and 1

1

( 2)

2 1n

n

n

n uu

u n

+=

+ +.

Prove by induction that, for 0,n ≥

2

2 1n

nu

n

+=

−. [5]

9 [NYJC/2010/Prelim/P2/2]

The sequence of numbers {ur} where r = 1, 2, 3, …, is such that it satisfies the recurrence relation

21

1r

r

ruu r

r

+ − =+

and 1u = 1.

(i) By dividing the above recurrence relation by r and using the method of difference, show that

2013 Revision Package BT1 Solutions

( )2 22

n

nu n n= − + for n = 1, 2, 3, …. [5]

(ii) Prove the result in (i) using mathematical induction. [4]

(iii) Find the exact value of 3

nu

n as n → ∞ . [1]

[Ans: (iii) ½]

10 [CJC/Prelim/P1/4]

The diagram below shows the graph of xxy −+= 2ln2 . The two roots of the equation

2ln2 =− xx are denoted by α and β , where βα < .

α βx

y

α βx

y

(i) Find the values of α and β , correct to 3 decimal places. [2]

A sequence of real numbers x1, x2, x3, … satisfies the recurrence relation

2)ln( 2

1 ++++====++++ nn xx for 1≥n .

(ii) Prove that if the sequence converges, it must converge to either α or β . [2]

(iii) By considering nn xx −+1 and the graph above, prove that

βα <<>+ nnn xxx if1 ,

βα ><<+ nnnn xxxx or if1 . [2]

2013 Revision Package BT1 Solutions

(iv) Hence deduce the value that xn converges to for 21 =x , giving your answer correct to 3 decimal

places. [2]

[Ans: (i) 357.5,464.0 == βα ; (iv) 357.5=→ βnx ]

11 [DHS/2010/Prelim/P1/3]

(i)Show that 2 24 5 ( )n n n a b− + = − + , where a and b are constants to be determined. [1]

(ii) Show that ( )2 2 2 2

3

1 4 5 1 ( 1) 1 5 2.N

n

n n n N N=

+ − − + = + + − + − −∑ [3]

(iii) Without the use of a graphic calculator, deduce that the sum in (ii) is strictly less than 2 1.N +

[2]

[Ans: (i) 2( 2) 1n − + ]

2013 Revision Package BT1 Solutions

Chapter 5, 7: Graphing Techniques & Transformations Solutions

1

(i)

[RJC/2010/Prelim/P1/Q7]

2 11

ay x

bx= + +

+

( )2

d2

d 1

y ab

x bx= −

+

When

d0,

d

y

x=

( )2

21

ab

bx=

+

( )2

12

1 1

2

abbx

abx

b

+ =

= − ±

Since a and b are positive constants, ab > 0 and thus there are 2 distinct real solutions for x.

Hence, C has exactly two stationary points. (shown)

(ii) Given that C passes through the point (0,3) ,

3 1

2

a

a

= +

=

x

y

2y =2

1x

b= −

'f ( )y x=

( )1

1b

b

−O ( )

11b

b

− +

||

__2 2b−

2013 Revision Package BT1 Solutions

2(i)

(ii)

[MJC/2010/Prelim/P1/Q8]

Let the curve be 3 2y ax bx cx d= + + + .

Since the points ( )2,75− , ( )0,3 and ( )1,12 lie on the curve.

Using ( )0,3 , 3d =

Using ( )2,75− ,

( ) ( ) ( )3 2

2 2 2 75a b c d− + − + − + =

8 4 2 72 (1)a b c− + − = ���

Using ( )1,12 ,

12a b c d+ + + =

9 (2)a b c+ + = ���

Since ( )1,12 is a maximum point, d

0d

y

x= .

x

y

( )f 1 2y x= −

1' , 3

2B

3' , 75

2A

( )' 0,12C

0

x

y

( )" 1, 3C

( )" 0, 0B

( )" 2, 72A −

( )"' 1, 3C −

α β

( )"' 2, 72A − −

0

2013 Revision Package BT1 Solutions

23 2 0ax bx c+ + =

3 2 0 (3)a b c+ + = ���

Using GC to solve (1),(2) and (3),

8, 7, 10a b c= − = =

Thus the equation of the curve is 3 28 7 10 3y x x x= − + + + .

3

(i)

[DHS/2010/Prelim/P1/10b]

(ii)

4

[TJC/2010/Prelim/P2/Q4]

(i)

y

x

1x = −

6y =

( )fy x′=

y

f '( )y x=

O x

x = 2

-2

O x

2

y

A’(-2, 0.5)

1

f( )y

x=

2013 Revision Package BT1 Solutions

(ii)

(b) Note:

2 2 5 23

1 1

x xy x

x x

− − += = − − +

− −

24y x

x= − − A→

2 24 4y x x

x x= − − − = − − +

B→ ( )

( )2 2

1 4 31 1

y x xx x

= − − − + = − − +− −

A: a reflection about y-axis

B: a translation of 1 unit in the positive direction of x-axis.

(ii)

2 2 5 23

1 1

x xy x

x x

− − += = − − +

− − ,

Asymptotes are: x = 1 and y = −x−3

Adding graph of ( )

( )2

2

2

14 1

2

xy

−+ + =

to part (ii), there are 4 roots for the

equation ( )

22 2

2

1 2 54 1

2 1

x x x

x

− − − ++ + =

− .

5(i) [RVHS/2010/Prelim/P1/Q10]

2d =

y

x

1x = −

1 2−

( )2 fy x=

0

2 2 5

1

x xy

x

− − +=

− ( )

( )2

2

2

14 1

2

xy

−+ + =

x =

y x= − −

2013 Revision Package BT1 Solutions

Method 1:

Using long division:

( )( )2 2 2

22

c b aax bx cy ax b a

x d x

− −+ += = + − +

+ +

1a∴ = , 2b = −

(ii) 2 2

2

x x cy

x

− +=

+

At ( )0, 4.5− : 4.52

c− =

9c∴ = −

(iii)

(0,-4.5)

( )2 2 24x y k− + = is a circle centre (4, 0), radius k

2 24 5 4

145 145 or

2 2

k .

k k

> +

⇒ < − >

y

x O 4

4−

4

(4, k)

2013 Revision Package BT1 Solutions

6

(a)

[HCI/2010/Prelim/P1/Q12]

2 2 2( 2) (1 )x a y− = −

22

2

( 2)1

xy

a

−⇒ + = reps an ellipse.

Method 1:

Sequence of transformations:

Scale // to x-axis by factor a.

Translate in the positive x-direction by 2 units.

Method 2:

Sequence of transformations:

Translate in the positive x-direction by 2

a units.

Scale // to x-axis by factor a.

(bi) 2

2

1

1 4

( )

4

( 1)

3

+ −

− +

− −

− − −

x

x x

x x

x

x

x

y

(bii) Sub

2 4

1

−=

+

xy

x into

2 2 2( 2) (1 )x a y− = − :

22

2 2 4( 2) 1

1

− − = − +

xx a

x

( ) ( ) ( )22 22 2 2 21 ( 2) 1 4⇒ + − = + − −x x a x a x --- (*)

(shown)

Hence the x-coordinate of the points of intersection of 1C and 2C satisfy equation (*).

(b)

(iii) From (ii), number of intersection points between 1C and 2C gives the number of real roots of the

1= −x

1= −y x

2

2 4

1

−=

+

xy

x

4− 2

2

2

( 2)1

xy

a

−+ =

2 − a 2 a+ 2−

2013 Revision Package BT1 Solutions

equation (*). From the graphs, there are 2 points of intersection between 1C and 2C . Hence 2

real roots.

7(i) [NYJC/2010/Prelim/P1/Q6]

y = f(x)

(ii)

(iii)

8a [AJC/2010/Prelim/P1/Q10]

x

y

2013 Revision Package BT1 Solutions

b ( )

2

2

1ln ln 3 2ln(3 )

6 9y x x

x x

− = = − = − −

− +

The graph can be obtained from lny x= by

1. translate of 3 unit in the negative x direction ln( 3)y x= +

2. reflect in the y-axis ln( 3)y x= − +

3. scale by factor 2, parallel to the y-axis

4. reflect in the x-axis

2013 Revision Package BT1 Solutions

Chapter 6: Functions Solution

1 (i)

2

2 2

2

2 2

(1 ) 2 ( 1)f ( )

(1 )

2 1

(1 )

x x xx

x

x x

x

+ − −′ =

+

− + +=

+

For stationary point, f ( ) 0 1 2,1 2x x′ = ⇒ = − +

Coordinates of stationary points 1 2

1 2,2 2

− − −

and

1 21 2,

2 2

+ − +

(ii)

Range of f is 1 2 1 2

,2 2 2 2

− − − +

(iii) 1

fg( )1

xx

x

−=

+

Domain of fg is { }: 0x x∈ ≥�

Range of g is [0, )∞

Thus, range of fg is 1 2

1,2 2

− − +

2 Let

2 1e , 0xy x

+= < .

2013 Revision Package BT1 Solutions

1ln

ln12

−−=

=+

yx

yx

Range of f = ( )e,∞

( )1f ln 1, ex x x−∴ = − − >

( )

( )

1g f fg( )

ln e 1 1x

x x

x

−=

= − − = − −

Alternative:

( )

( )

( )

( )

( )

2g 1

2

2

fg( ) e e , 1

g 1

g 1

g 1

since domain of f , 0

x xx x

x x

x x

x x

+ = = >

+ =

= −

= − −

= −∞

3 (i)

fR is ( )∞− ,1

(ii) gD is ( ) }2{\,1 ∞

since gf DR ⊄

as ( )∞− ,1 ⊄ ( ) }2{\,1 ∞

gf∴ does not exist

(iii) gf DR ⊂

f(x) > 1

122 >+ xx

2013 Revision Package BT1 Solutions

( )

12

212

−>

>+

x

x

12 −=∴k

222 ≠+ xx

0222 ≠−+ xx

Solving 31 ±−≠x i.e. 1 3a = − +

4 (i) Range of f is (0, 1]

(ii) gf(x) = g(cos x) =1

cos x, 0

2x≤ <

π

(iii) Area = 3 3

0 0

1sec

cos dx x dx

x

π π

=∫ ∫

= 30

ln sec tanx xπ

+

12

1ln 3 ln(1 0)

= + − +

ln( 3 2)= +

5 (i) An inverse function exists if and only if the function is a one-one function.

Let 2

1

)24( xy +=

)4(

2

124 22 −=⇒+= yxxy

1

x

y

y = cos x

1

x

y y = sec x

3π 2

π

1

x

y y = sec x

2013 Revision Package BT1 Solutions

62),4(

2

1: 21 ≤≤−→∴ −

xxxf

(ii)

(iii)

...2!2

12

1

2

1

22

11

21

22

1

+

+

+=

+

xxx

= ...

32

1

41 2 +−+ x

x

Expansion is valid for

12

<x

2<⇒ x

x3)

4

x1( 2 x3)x(f −=+⇒−=

3

2x =⇒

6 ( )

( )2 2

2

2 2

2f 3

2 32 2 2

32 4

x x kx

k k kx x

k kx

= − +

= − + − +

= − + −

The minimum point is at

2

,32 4

k k −

.

x

f-1(x)

f(x) y = x y

2013 Revision Package BT1 Solutions

2

3 ,4

f

kR

= − ∞

From the graph of f , it is not one-one and hence 1f −

doesn’t exist. For example ( ) ( )f 0 f 3k= =

.

2

2

[ 1, )

3 14

4

4

4

fR

k

k

k

= − ∞

= −

=

= ±

When domain of f is restricted to the set of negative real numbers, 1f −

exist. The minimum point

at 0 0x k≥ ⇒ ≥ . Therefore 4k = .

2f : 4 3, x x x x−− + ∈ �

( )3,fR = ∞

Let ( ) 2f 4 3x x x y= − + =

( )

( )

2

2

2

4 3

2 1

2 1

2

2

1

1

2 1 since 0

x x y

x y

x y

y

x y

x y x

x

− + =

− − =

− = +

− = ± +

= ± +

= − + <

( )-1 1 32 ,f x xx += − >

y

x

( )fy x=

2

,32 4

k k −

3

2013 Revision Package BT1 Solutions

7

( )1

g 21

xx

= ++

The vertical asymptote is 1x = − .

The horizontal asymptote is 2y = .

When ( )g 0x = ,

12 0

1

11

2

3

2

x

x

x

+ =+

+ = −

= −

(ii)

( )

( )

1fg ln 2 1

1

1 4fg ln 3 ,

1 3

xx

x xx

= + +

+

= + < −

+

y

( )gy x=

x1−

2y =

3

2−

2013 Revision Package BT1 Solutions

( ), ln 3fgR = −∞

iii)

( )

( ) ( )

( )

( )

2

2

2

2

h 3 14

h 3 14

3 9h 14

2 4

65 3h

4 2

x x x

x x x

x x

x x

= − + +

= − − +

= − − − +

= − −

Maximum point is 3 65

,2 4

.

Greatest 3

2b = .

y

( )fy x=

x1−

( )1,2gR = −

ln 3

fgR

2013 Revision Package BT1 Solutions

65,

4hR

= −∞

Let ( )h x y=

2

2

65 3

4 2

3 65

2

3, since

4

3 65

2 4

3 65

2 4

3

2

65

2 4

x y

x y

x y

x y

yx x

− − =

− = −

− = ±

±

=

= −

− <

( )-1 3 65h

2 4

65,

4x y x− − <=

8 (i)

( )2 1 1

f 21 1

xx

x x

+= = −

+ +

The horizontal asymptote is 2y = .

( )f 0 1=

y

( )hy x=

x

3 65,

2 4

2013 Revision Package BT1 Solutions

( ) ( )1 ln 2g x x= − + +

( )g 0 1 ln 2= − +

When ( )g 0x = ,

( )

( )

1 ln 2 0

ln 2 1

2

2

x

x

x e

x e

− + + =

+ =

+ =

= −

ii) ( )1, 2fR =

Let ( )2 1

f1

xx y

x

+= =

+

y

x

( )fy x=

2y =

1 ln 2− +

2e −

y

x

( )fy x=

2y =

1

2013 Revision Package BT1 Solutions

( )

2 1

1

2 1 1

2 1

1

2

xy

x

x y x

x xy y

yx

y

+=

+

+ = +

− = −

−=

( )-1 1f , 1 2

2

xx x

x

−= < <

iii)

( ) ( )

( )( ) ( )

( )( ) ( )

( )

1

ln 2

ln

1

1 2

hg 2

h 1 ln 2

h 1 ln 2

h

x

x

x

x e x

x e e

x e

x e

+

− + +

= +

− + + =

− + + =

=

Alternative

Let ( ) ( )g 1 ln 2x x y= − + + =

( )

( )1

1

1 ln 2

ln 2 1

2

2

y

y

x y

x y

x e

x e

+

+

− + + =

+ = +

+ =

= −

( )-1 1g 2, 1 ln 2xx e x

+= − > − +

( )( ) ( )

( ) ( )( )

( )

1

1 1

1 1

hg h

h 2 2

h

h

x

x

x

g x x

x e e

x e e

x e

− +

− +

=

= −

×

+

=

=

iv) ( ) ( )1 ln 2, 0,g fR D= − + ∞ ⊄ = ∞ therefore fg doesn’t exist.

2013 Revision Package BT1 Solutions

Chapter 8: Inequalities Answers

1 22 3x x+ <

23 2 3x x− < + <

23 2x x− < + and 22 3x x+ <

22 3 0x x+ + > and 22 3 0x x+ − <

21 23

04 16

x

+ + > and ( )( )2 3 1 0x x+ − <

x∈� and 3

12

x− < <

31

2x∴− < <

2

1 1 1

2 2 22 3 2 3x x x

xe e e e

+ < ⇒ + <

∴replace x with

1

2x

e

1 1

2 23

1 0 12

x x

e e− < < ⇒ < <

1ln1

2x <

0x∴ <

2

From graph, to solve for values of x at the points of intersection:

x

y

5 -1 0

-5

y = 5

542 −−= xxy

( )542 −−−= xxy

2013 Revision Package BT1 Solutions

5542 =−− xx or ( ) 5542 =−−− xx

01042 =−− xx or 042 =− xx

142 ±=x or

0=x or 4=x

142 −≤∴ x or 142 +≥x or 40 ≤≤ x

Otherwise method :

.|1||5|

5+≤

−x

x

( )( )515 −+≤ xx

( ) ( ) 222551 ≥−+ xx

( )( )[ ] ( )( )[ ] 0551551 ≥−−++−+ xxxx

Consider

( )( ) 0551 =+−+ xx or ( )( ) 0551 =−−+ xx

142 ±=x or

0=x or 4=x

142 −≤∴ x or 142 +≥∴ x or 40 ≤≤ x

3

2

71

4 3

x

x x

+≤

+ −

2

71 0

4 3

x

x x

+− ≤

+ −

+ + + - -

142 − 142 + 0 4

x

2013 Revision Package BT1 Solutions

( )2

2

7 4 30

4 3

x x x

x x

+ − + −≤

+ −

( )

2

2

7 4 30

3 4

x x x

x x

+ − − +≤

− − −

2

2

2 30

3 4

x x

x x

− +≥

− −

Since 2 22 3 ( 1) 2 0 for ,x x x x− + = − + > ∈�

2 3 4 0x x− − >

( ) ( )4 1 0x x− + >

1 or 4x x< − >

4

2

22 5 2exx

x+ − ≤

2

25 2e 2x

xx

⇒ − ≤ −

2

5 1e

2

xx

x⇒ − ≤ −

From the diagram,

or 0 or 0x x xα β≤ ≤ < >

Using G.C.,

1− 4

− + +

α β x

y

O

exy x= −

2

5 1

2y

x= −

2013 Revision Package BT1 Solutions

2.18 or 0.920 0 or 0x x x≤ − − ≤ < > (3s.f.)

Therefore solution set is ( , 2.18] [ 0.920,0) (0, )−∞ − ∪ − ∪ ∞ .

5 2 21 34 2 1 4( )

4 4x x x+ + = + +

Since x is real, 21

( ) 04

x + ≥

Thus 24 2 1x x+ + is always positive.

2

2

12 0

1 2

4 2 10

1 2

Since 4 2 1 0,

1 2 0

1

2

xx

x x

x

x x

x

x

+ >+

+ +>

+

+ + >

+ >

> −

2 2 11 1 1

22 1

x x

x x x

x

++ > ⇒ + + >

+ +

i.e. 1 1

2 01

1 2x

x

+ > +

Replace x by 1

x, we have

12

x> −

2 or 0x x∴ < − >

6

2

12 294

5

x

x

+≤

−⇒

2

2

(12 29) 4(5 )0

5

x x

x

+ − −≤

⇒ 2( 5 )( 5 )(2 3) 0x x x− + + ≤

⇒ x= -3/2, 5x ≤ − or 5x ≥ x= -3/2, 5x < − or 5x > ( 5x ≠ ± )

2013 Revision Package BT1 Solutions

2

(12 29 )4

5 1

x x

x

+≤

Replace x by 1/x, ⇒ x= -2/3, 1

5x

< − or 1

5x

>

⇒ x= -2/3, 1

05

x− < < or 1

05

x< <

⇒ x= -2/3, 1 1

5 5x− < < as x = 0 is a solution to the inequality

7 ln 2 0

ax

x

− ≥

where 1a > .

2

2 1

20

1 1 8 ) 1 1 8 )2

4 40

1 1 8 1 1 80

4 4

ax

x

x x a

x

a ax x

x

a ax or x

− ≥

− −≥

+ + − +− −

− + + +≤ < ≥

2013 Revision Package BT1 Solutions

Chapter 9: System of Linear Equations

1. [CJC/2010/Prelim/P1/Q1]

Let x be the price of high heels, y be the price of facial mask and z be the price of

handbag in dollars.

We have,

70.18375153

30.1158872

20.12983105

=++

=++

=++

zyx

zyx

zyx

Solving, x = 29.9, y = 99.9, z = 49.9

Total cost of gift 20.629$90.49290.99590.29 =×+×+=

2. [NJC/2010/Prelim/P1/Q1]

Let the unit digit be z.

Let the tenth digit be y.

Let the hundredth digit be x.

15 (1)x y z+ + = −

(100 10 ) (100 10 ) 594

99 99 594 (2)

x y z z y x

x z

+ + − + + =

⇒ − = −

4 5

4 5 (3)

y z x

x y z

+ = +

⇒ − + + = −

Using GC to solve the equations simultaneously,

8, 5, 2x y z= = = .

Thus the number is 852.

3. [IJC/2010/Prelim/P2/Q1]

2013 Revision Package BT1 Solutions

Let V 2ms− , M 2ms− , S 2ms− be the gravitational pull on each planet Venus, Mars

and Saturn respectively.

630S + 630V + 630M = 13860 ---------- (1)

900S − 600V = 2880 ---------- (2)

600S + 630V + 900M = 3(4870) = 14610 ---------- (3)

630 630 630 13860

900 600 0 2880

600 630 900 14610

S

V

M

− =

From GC,

M = 3.8, V = 9, S = 9.2

Hence the weight of Probe D on Saturn is ( )500 9.2 N× = 4600 N

4. [PJC/2010Prelim/P1/Q1]

Let the number of diagonals be 2d An Bn C= + +

No of diagonals in a triangle = 0

No of diagonals in a quadrilateral = 2

No of diagonals in a pentagon = 5

Therefore,

9 3 0

16 4 2

25 5 5

A B C

A B C

A B C

+ + =

+ + =

+ + =

Solving using GC, 1 3

, , 02 2

A B C= = − =

Triangle

(3 sides)

Quadrilateral

(4 sides)

Pentagon

(5 sides)

2013 Revision Package BT1 Solutions

Thus, 21 3

2 2d n n= −

For a polygon of 200 sides,

The number of diagonals = 21 3(200) (200) 19700

2 2− =

5. [RI/2010/Prelim/P1/Q3]

Let x, y, z be the exchange rate quoted for Sterling Pound, Euro Dollar and Swiss

Franc, respectively (i.e. 1 Sterling Pound = x Singapore Dollars, 1 Euro Dollar = y

Singapore Dollars and 1 Swiss Franc = z Singapore Dollars).

36 77 42 269.9x y z+ + =

55 18 63 233.45x y z+ + =

40 31 26 175.5x y z+ + =

Using the GC, x = 2.15, y = 1.78, z = 1.32

59 24 313kx y z+ + =

313 59(1.78) 24(1.32)82

2.15k

− −∴ = =

6. [RVHS/2010/Prelim/P1/Q1]

Let the no. of small, medium and large bottles manufactured be denoted by s, m and l

respectively.

So, 150 335 475 280400s m l+ + = ,

200 450 600 370700s m l+ + = and

3.8 2(2.5 4.2 )m s l= +

Using GC, solving the augmented matrix:

150 335 475 280400

200 450 600 370700

5 3.8 8.4 0

2013 Revision Package BT1 Solutions

Ans: s = 166, m = 550 and l = 150

Assumption:

The plastic bottles are of negligible thickness. OR

The plastic bottles are of the same thickness.

7. [SAJC/2010/Prelim/P1/Q1]

Let 3 2

nu an bn cn d= + + +

1 63u = : ( ) ( )

231 1 (1) 63

63 (1)

a b c d

a b c d

+ + + =

+ + + = −

2 116u = : ( ) ( )

232 2 (2) 116

8 4 2 116 (2)

a b c d

a b c d

+ + + =

+ + + = −

3 171u = : ( ) ( )

233 3 (3) 171

27 9 3 171 (3)

a b c d

a b c d

+ + + =

+ + + = −

4 234u = : ( ) ( )

234 4 (4) 234

64 16 4 234 (4)

a b c d

a b c d

+ + + =

+ + + = −

Using the GC APPL to solve (1), (2), (3), (4) simultaneously, we get:

1, 5, 61, 6a b c d= = − = =

3 25 61 6n

u n n n= − + +

Hence 50u = ( ) ( ) ( )3 2

50 5 50 61 50 6 115556− + + =

8. [TJC/2010/Prelim/P1/Q6]

(a) ( )( )

( )( )( )

2

2

f 5 84 61 1 0 0

g 2 2 1

x xx x

x x x x x

++ +≤ ⇒ − ≤ ⇒ ≤

− − − +

2013 Revision Package BT1 Solutions

( )( )( ) [ ]5 8 2 1 0 1,2x x x x⇒ + − + ≤ ≠ −

8 or 1 2

5x x⇒ ≤ − − < <

( )( )

f 81 or 1 2

5g

x

x x

x

ee e

e

− −

−≤ ⇒ ≤ − − < <

0 2xe−⇒ < <

1

ln2

x⇒ >

(b) ( ) ( )h fy x x= +

( ) ( )3 2 2 3 24 6 1 4 6y ax bx c x x ax b x x c⇒ = + + + + + = + + + + +

Since it passes through the points ( ) ( )1, 18 , 1, 14− − − and ( )3,30

( ) ( )( ) ( ) ( )3 2

1 1 1 4 1 6 18a b c− + + − + − + + = −

21 (1)a b c⇒ − + + = − − − −

( ) ( )( ) ( ) ( )3 2

1 1 1 4 1 6 14a b c+ + + + + = −

25 (2)a b c⇒ + + = − − − −

( ) ( )( ) ( ) ( )3 2

3 1 3 4 3 6 30a b c+ + + + + =

27 9 3 (3)a b c⇒ + + = − − − [M2 – -1 for any one wrong equation]

Solving (1),(2) and (3) gives 2, 10, 33a b c= − = = −

( ) ( )3 2h 2 10 33 h 101 1958625x x x= − + − ⇒ = −

2013 Revision Package BT1 Solutions

Chapter 12: Applications of Differentiation Solution

1 [TPJC Promo 08]

2013 Revision Package BT1 Solutions

2 [NJC promo 08]

2V x y=

Surface Area: 24 48xy x+ =

248

4

xy

x

−∴ =

21

(48 )4

V x x⇒∴ = −

Using GC, max volume occurs when 4x = and hence 2y = .

Dimension of box is 4 cm x 4 cm x 2 cm.

3 [JJC promos 08]

2

2102

xQR

= − ⇒

2

22( 10 )2

xp x

= + −

x

x

4

V

x

.

y

2013 Revision Package BT1 Solutions

22 400x x= + −

2

2102

xA x

= −

24002

xx= − [shown]

( )1

2 221 1

400 ( 2 ) 4002 2 2

dA xx x x

dx

− = − − + −

22

2

1400

22 400

xx

x= − + −

For stationary value of A, 0dA

dx=

22

2

1 400

22 400

xx

x⇒ = −

2 2 400x x⇒ = −

10 2 ( 0)x x⇒ = >∵

2(10 2) 400 200 30 2p∴ = + − = (cm)

4 [RJC promos 08]

By Pythagoras’ Theorem,

2 2 2 2

2 2 2 2

f ( )

( ) ( ) ( ) ( )

3 (5 ) 4 (Shown)

x AP PB

OA OP NP NB

x x

= +

= + + +

= + + − +

.

2 2 2 2 2 2 2 2

2 2

2 2

df( ) 0.5(2 ) 0.5(2)(5 ) 5

d 3 (5 ) 4 3 (5 ) 4

(5 ) 16 ( 5) 9

9 (5 ) 16

x x x x x

x x x x x

x x x x

x x

− − −= + = +

+ − + + − +

− + + − +=

+ − +

Let df( )

0d

x

x= , and hence we are solving

2013 Revision Package BT1 Solutions

2 2

2 2 2 2

(5 ) 16 ( 5) 9

((5 ) 16)) (5 ) ( 9)

x x x x

x x x x

− + = − − +

⇒ − + = − +

On simplification, we have

2 2

2

16 9(5 )

7 90 225 0

(7 15)( 15) 0

x x

x x

x x

= −

+ − =

− + =

When df ( )

0,d

x

x= x = 15/7 (since x > 0) satisfies the quadratic equation given.

Using the 1st

derivative test,

x 15

7

15

7

15

7

+

( )df

d

x

x −ve 0 +ve

Or alternatively using the second derivative test,

22

2 3 32 2 2 22 2 2 22 2

2 2 2 2 2

3 3

2 2 2 22 2

3 3

2 2 2 22 2

1 1( )(2 ) 2( 5)

d f( ) 1 12 2

d 3 (5 ) 4( 3 ) ((5 ) 4 )

9 ((5 ) 4 ) ( 5)

( 3 ) ((5 ) 4 )

9 16

( 3 ) ((5 ) 4 )

x x xx

x x xx x

x x x x

x x

x x

− −−

= + + ++ − +

+ − +

+ − − + − −= +

+ − +

= +

+ − +

which is greater than zero when x = 15/7.

Hence f(x) is minimum when x = 15/7, and on substituting x gives f(x) = 74 or 8.60 (to 3.s.f)

2013 Revision Package BT1 Solutions

5 [SAJC 2006 Prelims/P1/Q11]

2 1

2

x t

dx

dt

= −

=

( ) ( )( )

22

22

2

1

1

21 1 2

1

yt

dy tt t

dt t

=+

= − + = −+

( ) ( )2 2

2 2

2 1

1 12

dt tdy dy

dx d

t

d t tt x× = − × = −=

+ +

Equation of tangent at 2

12 1,

1t

t

+

( )( )

( ) ( )

( ) ( )

222

22 2 2

22 2

12 1

1 1

1 1 2

1 3 +1 shown

ty x t

t t

t y t xt t t

t y xt t t

− = − − − + +

+ − + = − + −

+ + = −

(ii) When 3t = , equation of tangent

( ) ( )2 223 1 3 3 3 3 1

100 3 25

y x

y x

+ + = − +

+ =

When the tangent meets the curve at 2

12 1,

1q

q

+

( )

( )( ) ( )

( )

2

2 2

3 2 2

3

3

2 2

2

100 3 25

1100 3 2 1 25

1

100 3 2 1 1 25 1

100 3 2 2 1 25 25

100 6 3 6 3 25 25

6 28 6 72 0

4(From GC) 3,

3

y x

qq

q q q

q q q q

q q q q

q q q

x

+ =

+ − =

+

+ − + = +

+ + − − = +

+ − + − = +

− + + =

= −

Therefore the point of intersection Q is

2013 Revision Package BT1 Solutions

2

4 1 8 92 1, ,

3 3 2541

3

− − = −

− +

6 [CJC 2006 Prelims/P1/Q11]

i)

5 se

5 sec

c tandx

ad

x a θ

θ θθ

=

=

2

3 tan

3 secdy

ad

y a θ

θθ

=

=

23 sec 3 3

sin5 sec tan 5sin5cos

cos

d d a

dx a

y dy

dx d

θ θ

θθ θ θ θθθ

× = = ==

ii) When the normal’s gradient = 1−

1

1

3

5sin1

3sin

5

dy

dx

θ

θ

=

=

=−

4cos

5

5sec

4

3tan

4

θ

θ

θ

=

=

=

The point is 25 9

5 ,4

5 3,3

4 4 4

aa

aa

=

×

×

When the tangent is parallel to the y -axis,

0

sin 05 θ

θ

=

=

The point is ( ) ( )sec0,3 tan 05 5 ,0aa a=

θ3

5

2 25 43− =

2013 Revision Package BT1 Solutions

7 [AJC 2007 Prelims P1Q13b]

(i)

By similar triangles

2 2

6

and 63

r

h d

hr d

= =

= =

( ) ( ) ( )

( ) ( ) ( )

( )

2 2

22

3

1 1

3 3

1 16 6

3 3

8

2 1

2 23

6 (shown)27

r

h

V h d

h

h

π

π π

ππ

π +

+

+ −

= −+

= −

=

(ii)

( )

( )

3

2

6 8

9

27

6

h

hh

V

dV

d

ππ

π=

−+

+

=

( ) ( )2 2

9 18020

6 6

dV

d

dh dh

dt d t hV hπ π× = × =

+ +=

When 3h = , ( )3

1

2

180 20 cms

93 6h

dh

dt ππ=

−=+

=

6 cm

2 cm

cmr

cmh

2 cm

2 cm

d cm

2013 Revision Package BT1 Solutions

8 [HCI 2007 Prelims P1Q2]

i)

2

3

12

4

xV

dV

dx

x

π

π

=

=

2 2

4 123

dV

dx

dx d

x

x

t dV xd π π= × = × =

When 3x = , ( )

-1

2

12 4m s

33

dx

dt ππ==

ii)

2

2

3

3

12

123

36

12dx

dt

dx dt

C t

t

x

x

x

xC

π

π

π

π=

=

=

+ =

+

∫ ∫

When 5x = , 36

125t C

π= +

When 10x = , 1000

36t C

π= +

Time taken 1000 125

s36 36 36

875C C

π π π = + − + =

2013 Revision Package BT1 Solutions

Chapter 13: Maclaurin’s Series Solutions

1

(i)

(ii)

(iii)

[ACJC/2008/Promo]

Solution

3 2

3 22 0

d y dy d y

dx dx dx+ =

24 2 3

4 2 32 2 0

d y d y dy d y

dx dx dx dx+ + =

When 0x = , 0y = 0dy

dx=

2

21

d y

dx= −

3

30

d y

dx=

4

42

d y

dx= −

Using Maclaurin’s series,

( ) ( )2 42 41 2 1 1

... ...2! 4! 2 12

x xy x x

− −= + + = − − +

( )

2 4

2 4 2 4

1 1ln cos ...

4 2 4 12 4

1 ln 2 ln 2

2 32 3072 16 1536

π π π

π π π π

= − − +

− ≈ − − ∴ ≈ +

( ) 2 41 1ln cos ... 2

2 12y x x x= = − − +

Differentiate y wrt x,

3

3

1tan ...

3

8 tan 2 2 ...

3

x x x

x x x

− = − − +

∴ = + +

2

(i)

(ii)

[MI/2008/Promo]

Solution

21y x x= + +

2

21

2 1

dy x

dx x= +

+ =

2

2

1

1

x x

x

+ +

+

2 2

1 1dy

x x xdx

+ = + +

2

1dy

x ydx

+ = (shown).

( )dx

dy x x

dx

dy

dx

y d x =⋅+ ⋅+ +

−)2(1

2

11 2

12

2

22

2013 Revision Package BT1 Solutions

2

2 2

2(1 ) 1

d y dy dyx x x

dx dx dx+ + = +

ydx

dyx

dx

ydx =++

2

22 )1( (shown).

( )3 2 2

2

3 2 21 (2 ) .1

d y d y d y dy dyx x x

dx dx dx dx dx+ + + + =

( )3 2

2

3 21 3 . 0

d y d yx x

dx dx+ ⋅ + =

( )4 3 3 2

2

4 3 3 21 (2 ) 3 .3

d y d y d y d y dyx x x

dx dx dx dx dx+ + + ⋅ + =

( ) 03.512

2

3

3

4

42 =++⋅+

dx

yd

dx

ydx

dx

ydx

When ,0=x ,1=y ,1=dx

dy ,1

2

2

=dx

yd

3

30,

d y

dx=

4

43

d y

dx= − .

Maclaurin’s Series: ....8

1

2

11 42 +−++= xxxy

3

1=x is suitable as the terms 0

3

1→

n

for all n ≥ 4.

3 [RJC/2008/Promo]

Solution

Let1e x

y− +=

ln 1y x= − + --- (1)

Differentiate (1) with respect to x:

1 d 1 d

2 1d d2 1

y yx y

y x xx

−= ⇒ + = −

+ --- (2)

Differentiate (2) with respect to x:

( )

( )

( )

2

2

2

2

2

2

2

2

d 2 d d2 1

d d d2 1

d d d2 1 1

d d d

d d d4 1 2 2 1

d d d

d d4 1 2

d d

y y yx

x x xx

y y yx x

x x x

y y yx x

x x x

y yx y

x x

+ + = −+

+ + = − +

+ + = − +

+ + =

2013 Revision Package BT1 Solutions

( )2

2

d d4 1 2 0

d d

y yx y

x x+ + − = (shown) --- (3)

Differentiate (3) with respect to x:

( )3 2 2

3 2 2

d d d d4 1 4 2 0

d d d d

y y y yx

x x x x+ + + − =

( )3 2

3 2

d d d4 1 6 0

d d d

y y yx

x x x+ + − =

At 0x = ,

2

1 1 1

2

d 1 d 1e , e , e

d 2 d 2

y yy

x x

− − −= = − = and

3

1

3

d 7e

d 8

y

x

−= −

By Maclaurin’s series,

1 1

1 1 2 3

1 7e e

1 2 8e e

2 2! 3!y x x x

− −

− −

= + − + + +

1 2 31 1 7

e 12 4 48

x x x−

≈ − + −

( ) ( )

2 1 2 1

2 3

1 2 3

2 3

.

2 2 1 1 7 = 1 2 ... 1 ...

2! 3! 2 4 48

1 = (16 24 20 11 ...)

16

x x x xe e e

x xe x x x x

x x xe

− + − +

=

+ + + + − + − +

+ + + +

4

(i)

[TJC/2008/Promo]

Solution

4 sin 2y x= +

2

4 sin 2y x⇒ = +

cos 2dy

y xdx

⇒ =

22

22sin 2

d y dyy x

dx dx⇒ + = −

2 3 2

2 3 2 2 4 cos 2

dy d y d y dy d yy x

dx dx dx dx dx⇒ + + = −

3 2

3 23 4 cos 2

d y dy d yy x

dx dx dx⇒ + = −

When x = 0, y = 2, 1

2

dy

dx= ,

2

2

1

8

d y

dx= − ,

3

3

61

32

d y

dx= −

Maclaurin’s series of y:

2013 Revision Package BT1 Solutions

(ii)

2 3

2

3

1 1 612 ......

2 8 2! 32 3!

612

2 16 192

x xy x

x xx

= + + − + − +

≈ + − −

When x = 0.5, by part (i) result, y ≈ 2.19466 (to 5 d.p.)

This gives an estimated error = 2.20033 2.19466

100% 0.258%2.20033

−× =

5 [ACJC/2008/Prelim/P1/Q9]

Solution

1siny x

−= ⇒

2

1

1

dy

dx x

=−

.

⇒ 2

1 1dy

xdx

− =

( )

( ) ( )

( )

22

2 2

22

2

3 2 22

3 2 2

3 22

3 2

diff. w.r.t ,

21 0

2 1

1 0

diff. w.r.t ,

1 2 0

1 3 0 ( )

x

d y dy xx

dxdx x

d y dyx x

dxdx

x

d y d y d y dyx x x

dxdx dx dx

d y d y dyx x Shown

dxdx dx

−− + =

− − =

− + − − + =

− − − =

( )

( )

4 3 22

4 3 2

5 4 32

5 4 3

diff. w.r.t ,

1 5 4 0

diff. w.r.t ,

1 7 9 0

x

d y d y d yx x

dx dx dx

x

d y d y d yx x

dx dx dx

− − − =

− − − =

(0) 0, '(0) 1, ''(0) 0, '''(0) 1, ''''(0) 0, '''''(0) 9f f f f f f= = = = = =

3 53

...6 40

x xy x= + + +

2013 Revision Package BT1 Solutions

1

2

3 5

2 4

1sin

1

3 ...

6 40

3 1 ...

2 8

dx

dxx

d x xx

dx

x x

−=

= + + +

= + + +

Using 1

2x = ,

2 4

2

1 13

1 2 21 ...

2 811

2

= + + +

2 4

2

1 13

1 2 21 ...

2 811

2

= + + +

≈ 147

128

⇒ 256

3147

6

(a)

(b)

(c)

[CJC/2008/Prelim/P2/Q1]

Solution

1 sin 1x x+ ≈ +

Since x is small.

By standard Maclaurin’s Series expansion,

( )1

22

1 11

1 2 21 1 1

2 2!x x x x

+ = + ≈ + +

21 11

2 8x x≈ + − (Shown)

Given 3x − e

x ln a = 0

⇒ 3x = e

x ln a

⇒ 3x = a

x

⇒ 3 = a

Given that ex ≈ 1 + x +

x2

2 +

x3

3!

3x = e

x ln a

⇒ 3x ≈ 1 + xln3 + (xln3)

2

2 +

(xln3)3

3!

( ) (0) 1y f x f= ⇒ =

2013 Revision Package BT1 Solutions

2

2

1 sin 12 1 sin '(0)

2 2

dy xy x f

dx y

+= + ⇒ = =

By implicit differentiation, 2 2

22

2

2 2

1cos 4 1 4

22 4 cos "(0) 0

2 4

dyx y

d y dy dxy y x f

dx dx y

− −

+ = ⇒ = = =

By implicit differentiation, 3 2

33 2 2

3 2 2

2

sin 4 121

12 4 sin '"(0)2 4

2

dy dy d yx y

d y dy d y dy dx dx dxy x f

dx dx dx dx yy

− − − ⋅

+ ⋅ + = − ⇒ = = −

By Maclaurin’s Expansion,

2 3

3

"(0) '"(0)(0) '(0) .....

2! 3!

1 11

2 24

f fy f xf x x

x x

= + + + +

≈ + −

7 [JJC/2008/Prelim/P1/Q11]

Solution

1 sin x

y e−

=

1

sin

2

d 1.

d 1

xye

x x

=−

2 d

1-d

yx y

x=

2

2 2d(1 )

d

yx y

x− =

2 2

2

2

d d d d2 (1 ) 2 2

d d d d

y y y yx x y

x x x x− + − =

2

2

2

d d (1 )

d d

y yx x y

x x∴ − − =

Diff wrt x,

2 3 2

2

2 3 2

d d d d d2 (1 )

d d d d d

y y y y yx x x

x x x x x− + − − − =

2 3

2

2 3

d d d3 (1 ) 2

d d d

y y yx x

x x x− + − =

When x = 0,

y =1, d

d

y

x

= 1,

2

2

d

d

y

x

=1 ,

3

3

d

d

y

x

=2

12 3

sin.1 ..

2 3

x x xe x

= + + + +

2013 Revision Package BT1 Solutions

1sin 2 3 21(1 ...)(1 )

cos 2 3 2

xe x x x

xx

−= + + + + −

2 3 2

(1 ...)(1 ...)2 3 2

x x xx= + + + + + +

2 351 ...

6x x x= + + + +

2013 Revision Package BT1 Solutions

Chapter 14: Integration Techniques Solutions

1 [AJC 2007 Common Test]

2

22

2 1

2 1

1

1 4

1 8 1 1

8 2 11 4

4

1 1.2 1 4 sin (2 )

8 2

1 11 4 sin (2 )

4 2

xdx

x

xdx dx

xx

x x c

x x c

−= − −

−−

= − − − +

= − − − +

∫ ∫

2 [AJC 2007 Common Test]

2

2

2

1

2 4

02

24

2

cos 2sin cos

10, , ,

2 2 4

cos cos

1 sin sin

cos2sin cos

1 sin

2cos

x dx d

x x

x

x

xdx d

x

d

π

π

π

π

θ θ θ θ

π πθ θ

θ θ

θ θ

θθ θ θ

θ

θ θ

= ⇒ = −

= = = =

= =−

= −−

= −

∫ ∫

2

4

2

4

(1 cos 2 )

sin 2

2

1 1

2 4 2 4 2

d

π

π

π

π

θ θ

θθ

π π π

= +

= +

= − + = −

3 (AJ 06Prelim P2/Qn 3)

(i) ( ) ( )1

2 2 221

1 1 2 12

dx x x x x x

dx

− − = − − + −

2013 Revision Package BT1 Solutions

( ) ( )

( )

12 22

22

2

2 2

2

2

2

11 2 1

2

11

1

1

1 2

1

x x x x

xx

x

x x

x

x

x

− = − − + −

−= + −

− + −=

−=

(ii) ( )1 1 2 2

2

14 sin sin 2 2

1x xdx x x x dx

x

− −⌠⌡

= − ×−∫

( )

( )

21 2

2 2

1 2 2 1

1 2 1sin 2

1 1

sin 2 1 sin

xx x dx dx

x x

x x x x x C

− −

⌠ ⌠

⌡⌡

−= + −

− −

= + − − +

4 (VJ 06FE Qn 6)

( ) ( )sin 3cos 3sin 2cos 3cos 2sinx x A x x B x x+ = + + −

sin 3cos 3 sin 2 cos 3 cos 2 sinx x A x A x B x B x+ = + + −

Comparing the coefficients for xsin : 123 =− BA (1)

Comparing the coefficients for xcos : 232 =+ BA (2)

Solving 13

9=A ,

13

7=B

( ) ( )

( ) ( )

( )⌡⌠

+

−+=

⌡⌠

+

−+

⌡⌠

+

+=

+

−++=

⌡⌠

+

+

dxxx

xxx

dxxx

xxdx

xx

xx

dxxx

xxxx

dxxx

xx

cos2sin3

sin2cos3

13

7

13

9

cos2sin3

sin2cos3

13

7

cos2sin3

cos2sin3

13

9

cos2sin3

sin2cos313

7cos2sin3

13

9

cos2sin2

cos3sin

2013 Revision Package BT1 Solutions

Let 3sin 2cosu x x= +

3cos 2sindu

x xdx

= −

( )

Cxxx

Cux

duxxu

xxx

dxxx

xxx

+−+=

++=

−+=

⌡⌠

+

−+

sin2cos3ln13

7

13

9

ln13

7

13

9

sin2cos3

1sin2cos3

13

7

13

9

cos2sin3

sin2cos3

13

7

13

9

5 (RJ 06Prelim P1/Qn 14)

(a)

( )

BAAxx

BxAx

++−=

++−=

62

62

Comparing coefficients

3,2

1=−= BA

( )

( )

( )( )

( )

( ) Cxxx

dxx

xx

dxxx

xx

dxxx

dxxx

x

dxxx

x

dxxx

x

+−+−−−=

−−+−−−=

+−+−−+

−−

−=

−−+

−−

+−−=

−−

++−−=

−−

3sin386

31

1386

89932

13

2

1

86

2

1

86

13

86

62

2

1

86

3622

1

86

2

2

2

2

2

22

22

6 (NJ 06FE Qn 8)

(a)

2013 Revision Package BT1 Solutions

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )( )

( ) ( ) ( )( )xxx

dxx

xxxdxx

dxxxxxxdxx

dxx

xxxxxxdxx

dxxxxdxx

dxx

xxxxdxx

lnsinlncos2

lncos

lnsinlncoslncos 2

lncos lnsinlncoslncos

1lncoslnsinlncoslncos

lnsinlncoslncos

1lnsinlncoslncos

+=

+=

−+=

−+=

+=

−−=

∫∫∫

∫∫

( ) ( ) ( )( )

( )

( )2

113

2

1

0sin0cos2

1

6sin

6cos

2

1

lnsinlncos2

lncos

6

6

11

66

−+=

+−

+=

+=∫

π

πππ

ππ

e

e

xxx

dxx

ee

(b)

( ) ( ) ( )

( ) ( )( )2223

2222

23

1432811123

2

43

121

811123

++++=+++

+

++

+=

++

+++

xxxAxxx

x

x

x

A

xx

xxx

Comparing coefficient of 2

x , 2=A

( ) ( )

3 2

2 2

3 12 11 8

1 2

x x xdx

x x

⌠⌡

+ + +

+ +

2013 Revision Package BT1 Solutions

( )

( )

( )( )

( )

2 2

2 2 2

1

2 1

2 1

2 3 4

21

1 3 2 12 4

2 2 21

1 3 12 ln 2 4 tan

1 2 2 2

2 3 4ln 2 tan

1 2 2 2

xdx

xx

xdx dx dx

x xx

x xx C

xx C

x

⌠⌡

⌠ ⌠ ⌠

⌡ ⌡⌡

+= +

++

= + ++ ++

+ = + + + + −

= − + + + ++

7 (SAJC 07 Prelim P1/Qn 14a)

dxaxa

∫ −

3

0

2)(9

= θθ

π

da ∫

2

0

2cos33

= θθ

π

da ∫

+2

02

12cos9

=2

0

2sin2

1

2

θθ

+

a

=a4

So a = 2.

Let θsin3=ax .

θθ

cos3

ad

dx=

2013 Revision Package BT1 Solutions

8 1

222 3

23 2

1

23

2

1

1

3

2

1 1

6 611 1

1

61

sin6

kk

k

k

ydx dy

yx x

y

dyy

y

π π

π

π−

= ⇒ − =

− −

⇒ − =−

⇒ − =

∫ ∫

1

1

1 sin

3 6

1 sin

6

k

k

π π

π

⇒ − − =

⇒ =

∴k = 2

2013 Revision Package BT1 Solutions

Chapter 15: Areas and Volumes Solutions

1a [AJC 2007 Common Test]

1

2

0

11

2

200

1 2

2

0

1

2

0

11

0

Area = ln(1+x )

2ln(1 ) .

1

2(1 ) 2ln 2

1

2ln 2 2

1

ln 2 2 2 tan

ln 2 2 2 ln 2 24 2

dx

xx x x dx

x

xdx

x

dxx

x x

π π

= + − +

+ −= −

+

= − −+

= − −

= − − = − +

b ( )

ln2

2

0

ln 2

0

ln 2

Volume = (1) ln 2 1

ln 2

ln 2 ln 2 1

2 ln 2 (2 1) (2 ln 2 1)

y

y

e dy

e y

e

π π

π π

π π

π π π

− −

= − −

= − − − = − − = −

2 (SRJC 06FE Qn 10b)

When exy == ,1

2013 Revision Package BT1 Solutions

(i) Area of R

( )

( )

( ) [ ]( ) ( )[ ]

2

2

2

2

units 42ln2

22ln2ln2

ln2

1ln2

ln2

−+=

−−−−−=

−−−=

−−−=

−−=

e

eeee

xxxe

dxx

xxxe

xdxe

e

e

e

(ii) ln yy x x e= ⇒ =

When 2ln,2 == yx

Volume

( )( )

( )

( )

[ ] ( )

[ ] ( )

32

2

2ln22

1

2ln

2

1

2ln

2

21

2ln

2

units 2ln462

1

2ln1442

1

2ln142

1

2ln142

1

2ln14

22ln1

+−=

−−−=

−−−=

−−

=

−−=

−−=

e

e

ee

e

dxe

dxy

y

y

ππ

ππ

ππ

ππ

ππ

3 θcos4=x , θsin5=y

Using the GC, we can see that the curve is an ellipse.

2013 Revision Package BT1 Solutions

θθ

sin4−=d

dx, θ

θcos5=

d

dy

θθ

cot4

5−=

d

dy

When 3

πθ = , 2

3cos4 ==

πx ,

2

35

3cos5 ==

πy ,

34

5

3cot

4

5−=−=

π

dx

dy.

Equation of tangent:

( ) 32

52

34

5

34

5

2

32

5

+−−=

−=−

xy

x

y

When 0=y ,

( )

( )

8

32

52

34

5

32

52

34

50

=

=−

+−−=

x

x

x

The tangent cuts the x-axis at 8=x .

2013 Revision Package BT1 Solutions

When 0=y ,

0

sin50

=

=

θ

θ

4

0cos4

=

=

x

x

( )

( )

( )

4

2

0

3

02

3

0

3

0

3

Area under curve

1 5 38 2

2 2

15 35sin 4sin

2

15 320 sin

2

15 3 1 cos 220

2 2

15 3 sin 210

2 2

15 3 1 210 0 0 sin

2 3 2 3

15 3 310

2 4 3

10 3 uni3

ydx

d

d

d

π

π

π

π

θ θ θ

θ θ

θθ

θθ

π π

π

π

= − −

= − −

= +

−= +

= + −

= + − − −

= + −

= −

2ts

2013 Revision Package BT1 Solutions

( )

( )

( )

( )

2

42

2

02

3

02

3

02

3

02

3

03

3

Volume

1 5 38 6

3 2

75 25sin 4sin

75 100 sin sin

75 100 sin 1 cos

75 100 sin sin cos

cos75 100 cos

3

1 175 100 1 cos co

3 3 3

y dx

d

d

d

d

π

π

π

π

π

π π

π π θ θ θ

π π θ θ θ

π π θ θ θ

π π θ θ θ θ

θπ π θ

ππ π

= − −

= − −

= +

= + −

= + −

= + − +

= + − + − − +

3

3

s3

2 1 175 100

3 2 24

575 100

24

325 units

6

π

π π

π π

π

= + − − − +

− = +

=

4 (NJ 06FE Qn 10)

a) Using the GC

tdt

dx+= 1

2

3

2013 Revision Package BT1 Solutions

3

1

0

2

1

0

units 8

3

42

3

12

3

12

31

2

1

π

π

=

=

−=

+−=

=

dtt

dttt

ydxx

x

b)

From GC

When 1=y

3

42

14

2 4

1

=

−=−

=

x

xx

x

x

Volume⌡

−−=

3

2

2

1

4

2dx

x

xππ

Let ( )22 1 cosx θ= +

4sin cosdx

dθ θ

θ= −

When 2=x ,

1=y

2 3

2013 Revision Package BT1 Solutions

( )

2

0cos

cos122

2

2

πθ

θ

θ

=

=

+=

When 3=x ,

( )

4

2

1cos

cos123

2

2

πθ

θ

θ

=

=

+=

( )( )

( )

( )

( )

22

4

2

4

2

4

2

2

4

2

4

2

2

2

4

2

2

2

3

2

2

1

units 4

2

42

12

2sin

2

1

42sin

2

12

2

2sin2

2

12cos4

cos4

cossin4sin

cos

cossin4cos1

cos

cossin4cos124

2cos12

4

2

ππ

πππ

ππ

ππππ

θθ

ππ

θθ

ππ

θθππ

θθθθ

θππ

θθθθ

θππ

θθθθ

θππ

ππ

π

π

π

π

π

π

π

π

π

π

π

π

−=

−+=

+−

++=

++=

⌡⌠ +

+=

+=

⌡⌠ −−=

⌠−

−−=

⌠−

+−

−+−=

−−=

d

d

d

d

d

dxx

xV

2013 Revision Package BT1 Solutions

5 (CJ 06Prelim P1/Qn 14)

(i)

( )

( ) ( )

2

0

2

0

2Area of

1

2 ln 1

2ln 2 1 2ln 0 1

2ln 3

R dxx

x

=+

= +

= + − +

=

(ii)

Volume ⌡

+

+==−

−∫0

5.0

20

5.0

2

1

21 dx

xdxy

(iii) When 5.0−=x , 515.0

21 =

+−+=y

2013 Revision Package BT1 Solutions

( )1

1

4

1

4

11

2

11

2

1

21

1

21

1

21

2

2

2

2

+−

−−

=

−=

−−

=

−=+

+=−

++=

yyx

yx

yx

yx

xy

xy

Volume

( )

( )

3

5

3

5

3

2

5

3

2

2

units 02.1

32ln42

454ln4

4

425.1

1ln41

425.1

11

4

1

425.1

52

1

π

ππ

ππ

ππ

ππ

=

+−

−−

+−

−−=

+−−

−−=

⌠+

−−

−−=

= ∫

yyy

dxyy

dxx

6i [ACJC 2007 Common Test]

( ) ( )( )( ) ( )( )

( ) ( )

( ) ( )( )( ) ( )( )

( ) ( ) ( )

( ) ( )

sin lncos ln cos ln

cos ln sin ln

cos ln cos ln sin ln

cos ln sin ln cos ln

2 cos ln cos ln sin ln

xx dx x x x dx

x

x x x dx

xx x x x x dx

x

x x x x x dx

x dx x x x

− = −

= +

= + −

= + −

∴ = +

∫ ∫

∫∫ ( )

( ) ( ) ( ) cos ln

x C

x dx

+

∴ =∫x x

cos ln x + sin ln x + K2 2

2013 Revision Package BT1 Solutions

ii

Turning point: (1, 1)

x-intercepts: ( )

π-

2e ,0 = 0.208,0 and ( )

π

2e ,0 = 4.81,0

( ) ( )2

2

5

3 Required area cos ln cos ln

0.3871 0.0037

e

ex dx x dx

π

π= +

= +

=

∫ ∫

0.391

7

2

2 2

1 secd d

1 tan 1x

x

θθ

θ=

+ +∫ ∫

( )1

sec d

ln sec tan

ln sec tan (Shown)

c

x x c

θ θ

θ θ

=

= + +

= + +

(i)

x

y

O

R

1

1

2 3y x= 2

1

1y

x=

+

2013 Revision Package BT1 Solutions

.

2

22

1 1 1

1 122 31

xx

xx= ⇒ =

++

( )( )

4 2

2 2

12 0

3 4 0

3

1

2

x x

x x

x

y

⇒ + − =

⇒ − + =

⇒ =

⇒ =

(ii) Area of Region R 2

0

31 1 1

d 32 21

xx

= −

+∫

( )

( )

( )

1

0

1

3 3ln sec tan

4

3ln sec tan 3 3

4

3ln 2 3 (Ans)

4

x x−

= + −

= + −

= + −

(iii) Volume of solid

2

0

3 1d

2y xπ

= −

2

20

3 1 1d 0.513 (Ans)

21x

= − =

+ ∫

8 [IJC 2007 Prelim]

(a) 1

ln 1dx

x t tdt t

= + ⇒ = +

Area required 2 2

11 1

1(2 ) 2 2 2 2 3

e e ett dt t dt t t e e

t

+ = = + = + = + −∫ ∫ units

(b) 2 4

12 2

y

y y

−= − +

+ +

2013 Revision Package BT1 Solutions

2 2

2

2 4 8 16d 1 1

2 2 2 (2 )

168ln 2

2

yy dy dy

y y y y

y y Cy

−= − + = − +

+ + + +

= − + − ++

∫ ∫ ∫

Volume required

[ ]

2 2 21 1 0

1 0 1

1

0

2 | | 2 2

2 2 2

8ln | 2 | 16( 2)

161 8ln 3 8ln 2 8

3

14 28 ln

3 3

y y ydy dy dy

y y y

y y y

π π π

π π

π π

π π

− −

− − += = +∫ ∫ ∫

+ + +

= − + − + +

= − − + + +

= +

9 [PJC/2007/Block Test]

area of PQRS < A < area of PQUT

Using GC, min point is (1, 2) 2 1.5 2.5 1.5A∴ × < < ×

3 < A < 3.75.

222

0.50.5

1 15( ) d ln 2 ln 2

2 8

xA x x x

x

= + = + = +

Thus 15

3 2ln 2 3.758

< + <

9 15

ln 216 16

⇒ < <

232

2

0.50.5

1 1 57( ) d 2

3 8

xV x x x

x x

π= π + = + − =

10 [TPJC 2007 Common Test]

0.5 2

2.5

P Q

R S

U T

2013 Revision Package BT1 Solutions

(a) Area of region required = 2

1

(ln )x e

x

x dx=

=∫

When x = eu, 1 0 ; 1x u x e u= ⇒ = = ⇒ = and

udxe

du=

Area of region required = 1 1

2 2

0 0

uu

u

dxu du u e du

du

=

=

=∫ ∫ (shown)

Using integration by parts,

The exact area

1 112 2

00 0

11

00

2

2 2 2 2 2 2

u u u

u u

u e du u e ue du

e ue e du e e e e

= −∫ ∫

= − − = − + − = −∫

(b) Using the graphic calculator, find the volume of the solid formed when the region bounded by

the curves cosy x= , the lines 3

22

y x= − + and 1y = is rotated 2π radians about the y-axis, giving

your answer correct to 3 significant figures.

When 3

22

y x= − + and cosy x= intersect, from GC, 0.9403x = and 0.5895y =

Volume required

( )2

1 21

0.5895

4 2cos

3

0.285 to 3sf

yx dxπ −−

= −∫

=

2013 Revision Package BT1 Solutions

Chapter 16: Differential Equations

1 2

2sec tan

d yx x

dx=

Integrating both sides with respect to x: sec tan secdy

x x dx x Cdx

= = +∫

Integrating both sides with respect to x again: ( )

( )

sec

ln sec tan

y x C dx

x x Cx D

= +

= + + +

The general solution is ( )ln sec tany x x Cx D= + + +

2(i)

dx

duxee

dx

dy uu +=

xdx

dy4=

2(ii) ∫ ∫= xdxdy 4

Cxy += 22

Cxxeu += 22

x

Cxe

u += 2

Cx

Cxu ,2ln

+= is an arbitrary constant.

2 (iii)

3 0.4 (10 )

dyy y

dx= −

12

− 1 x

1

2x = − 1

2x = y

2013 Revision Package BT1 Solutions

( )( )

10.4

(10 )

1 1 10.4

10 (10 )

1ln ln 10 0.4

10

dy dxy y

dy dxy y

y y x C

=−

+ =−

− − = +

∫ ∫

∫ ∫

4 10

ln 4 1010

, 10

x C

yx C

y

yAe A e

y

= +

= =−

When x = −1, y = 5 ⇒ 4

A e=

4 44 4 4 4

4 4

10 (10 )

10 1

xx x

x

y ee y e y y

y e

++ +

+= ⇒ = − ⇒ =

− +

4 1

dy dzy z x

dx dx= − ⇒ = −

Substituting into 1 2

1dy x

y dx y

−− = :

( ) ( )1 2

1 1

1 2

1

dz x

z x dx z x

dzz x x

dx

dzz

dx

− − − =

− −

− − + = −

= −

Integrating w.r.t. x:

( )

( )

1 1

1

ln 1 , where is a constant

1

1, where

1 1 (Shown)

x c

x c

x x

dz dxz

z x c c

z e

z Ae A e

y x Ae y x Ae

+

=−

− = +

− =

= + =

+ = + ⇒ = − +

∫ ∫

When curve passes through ( )1,0 , A = 0 1y x⇒ = −

When curve passes through ( )0,2 , A = 1 1 xy x e⇒ = − +

2013 Revision Package BT1 Solutions

(Notice that 1y x= − is an oblique asymptote for 1 xy x e= − + )

5

( )( )

2

1

2

4

( 2)

2 41 4 2 4

1 2

dy

dx x

xdy x dx y c y c

x

=+

+= + ⇒ = + ⇒ = − +

− + ∫ ∫

At ( )2,7A = , 4

7 82 2

c = + =+

Thus, equation of the curve is 4

82

yx

= − ++

Gradient of tangent at A

( ) ( )2

2,7

4 1

42 2

dy

dx= = =

+

Gradient of normal at A 4= −

Equation of normal at A: ( )7 4 2 4 15y x y x− = − − ⇒ = − +

6 ( )1

dxkx x

dt= −

1y x= −

1x

y x e= − +

x

y

2

1

1

2013 Revision Package BT1 Solutions

( )

( ) ( )

1 1 1

1 1

ln ln 1 ln

ln (shown)1

dx k dt dx k dtx x x x

x x C kt

Cxkt

x

= ⇒ + =− −

⇒ − − + =

=

∫ ∫ ∫ ∫

1When 0, ln 0 9

10 9

1When 1, ln ln 3

4 3

Ct x C

Ct x k k

= = ∴ = ⇒ =

= = ∴ = ⇒ =

( )

9 9 9ln ln 3 ln ln 3 3

1 1 1

3 9 3 1

9 3

t t

tt

t

x x xt

x x x

x x x

∴ = ⇒ = ⇒ =

− − −

⇒ = − ⇒ =+

3 11 as (shown)

99 3 13

t

t

t

x t= = → → ∞+ +

2013 Revision Package BT1 Solutions

7 i)

22death of rate birth of rate dt

daxx

x−=−=

At x = 10, 20101020 2 .a)(a)( =⇒−=

5

2dt

d 2x

xx

−=∴

ii) Selling away 1800 prawns daily, D.E. becomes 8.15

2dt

d 2

−−=x

xx

( ) ( )( )195

1910

5

1

dt

d

5

9

52

dt

d

2

2

−−−=+−−=

−−=

xxxxx

xx

x

iii) Separating the variables, ( )( ) 5

1

dt

d

19

1−=

−−

x

xx

Integrating both sides w.r.t. t: ( )( )

⌡⌠ −=

⌠−−

txxx

d 5

1d

19

1

( ) ( )

( ) ( )

c

t

eA,Aex

x

cct

xlnxln

txxx-

==−

+−=−−−

⌡⌠ −=

⌠−

1

9

constantarbitrary an is where,5

819

d 5

1d

18

1

98

1

5

8

At 0=t , x = 13: 3

1

113

913=

−=A 1

24

31

98

5

8

+=⇒=−

−∴

t

t

xe

x

x

2013 Revision Package BT1 Solutions

Chapter 10 and 17: Vectors

1 (SRJC/2009/Prelim/P1/Q2) 1. (a)

14 2

0 414 2

1 1 14

1 1 11

���� �������� OB OAOP

+ λ − + λ + λ = = = λ + λ + λ + λ + λ

14 22

114 2 21 4

4 5 51 1

1 12

����CP

− + λ − + λ− + λ

λ = λ − − = + + λ + λ + λ −

14 22

1

45

1

2

CP

− + λ − + λ

λ = + + λ

���� 2

4

1

k

=

2k⇒ =

4 14 25 4 8 2 2 4

1 1

3

k or kλ − + λ

+ = = − = − = −+ λ + λ

⇒ λ =

(b) 2

1 0

0 1

2cos150

5 1

µ

µ

• =

+

⇒2

3 2

2 5 1

µ

µ− =

+

24 15 1µ µ⇒ = − +

2013 Revision Package BT1 Solutions

2 216 15( 1)µ µ⇒ = +

2 15µ⇒ =

15µ = − (reject positive value of µ)

2

(i)

(ii)

Equation of line l1 : ~

1 3

2 2 ,

5 0

r

= + λ

λ ∈� .

Equation of line l2 : ~

1 1

0 1 ,

1 1

r

= + β −

β∈� .

When the lines intersect,

+

=

+

1

1

1

1

0

1

0

2

3

5

2

1

βλ

βλ +=+ 131 ------ (1)

βλ =+ 22 ------ (2)

β+−= 15 ------ (3)

From (3), 6=β

Substitute into (2), 2=λ

Check (1) : LHS = 1 + 3(2) = 7

RHS = 1 + 6 = 7 = LHS

Therefore the lines intersect.

=

+

=

5

6

7

1

1

1

6

1

0

1

OX

2013 Revision Package BT1 Solutions

0230

0

2

3

1

=+⇒=

bab

a

------ (1)

010

1

1

1

1

=++⇒=

bab

a

------ (2)

Solving, 3,2 −== ba .

Equation of line l3 : ,

1

3

2

5

6

7

~

−+

= sr s ∈� .

Since V lies on l3,

−+

=

1

3

2

5

6

7

sOV , for some s ∈� .

7 7 2 2

5 14 6 6 3 5 14 3 5 14

5 5 1 1

VX s s

= ⇒ − − − = ⇒ − =

����

14 5 14 5 5s s s⇒ = ⇒ = ⇒ = ±

Therefore V = ( )17, 9, 10− or ( )0 ,21 ,3− .

Alternative Solution:

( )2

15 14 3

141

OV OX

= + −

���� ���� or ( )

21

5 14 314

1

OV OX

= − −

���� ����

7 2

6 5 3

5 1

OV

= + −

���� or

7 2

6 5 3

5 1

OV

= − −

����

17

9

10

OV

= −

���� or

3

21

0

OV

=

����

2013 Revision Package BT1 Solutions

Therefore V = ( )17, 9, 10− or ( )0 ,21 ,3− .

3

1

5

: 4 15

3

Π

⋅ − =

r

Distance from A to 1Π

6 5

2 4

6 3 15 4 15 11 11 50

5050 50 50 50 50

⋅ − − = − = − = =

1

15 4 and are on the same side of

50 50A O Π> ⇒

Vector parallel to 2Π

6 5 1

2 2 0

6 8 2

= − = − −

Normal vector of 2Π

1 1 4 2

0 2 12 2 6

2 10 2 1

− −

= × = = −

Acute angle between 1Π & 2Π

5 2

4 6

3 11 1

5 2

4 6

3 1

31cos cos

50 41

− ⋅ − −

= =×

46.8= ° (to 3 s.f.)

1 2 3: 5 4 3 15; : 2 6 6; : 8x y z x y z x y az bΠ Π Π− + = − + + = − + + =

For line of intersection of 1 2 and Π Π (also the intersection of the 3 planes):

5 4 3 15 1 0 1 3

2 6 1 6 0 1 0.5 0

x x

y y

z z

− = ⇒ = − −

2013 Revision Package BT1 Solutions

Let , z t t= ∈� .

Then 2

3 3 2

0 12

0 2

t

x tt

y

z t

= − = − −

3 2

0 1 ,

0 2

µ µ

⇒ = + ∈ −

r �

Take 0 and 1µ µ= = , two points lying on 3Π are ( )3,0,0 and ( )5,1, 2− .

Sub. into 8x y az b+ + = : ( ) ( )

( ) ( )

3 8 0 0 3

5 8 1 2 3 5

a b b

a a

+ + = ⇒ =

+ + − = ⇒ =

4

(MJC/2009/Prelim/P1/Q5)

(i) Since AB = −b a����

and A, B and C are collinear,

2k∴ =

2 2

3 2

OC OB BC= +

= −

b+ b a

= b a

���� ���� ����

(ii) 3

4.

aa b

a=

2

2

34

4

16

3

4 4 3

33

a

a

a

=

=

= =

(iii) 2 2 2b 2 ( 2) 2 2 3= + − + =

In this case, the length of projection is ON����

which

is 3

a4

and is equal to 4 in this question.

2013 Revision Package BT1 Solutions

( )

0

a.bcos

a b

4

4 32 3

3

1

2

or 603

θ

πθ

=

=

=

=

(iv)

( ) ( )

2

3

2 2 3

3

2

2

2

DC DADE

+=

− + −=

= −

− −

a a b

b

=

���� ��������

5

(YJC/2009/Prelim/P1/Q9)

(a) 1l passes through A(0, 3, 1) and is parallel to

−=

1

2

1

1m .

A

B

C O

N

D

E

2013 Revision Package BT1 Solutions

)

2l passes through B(1, 0, 2) and is parallel to

=

2

4

2

2m .

Since 12 2mm −= . 1l and 2l are parallel.

(b)(i) Since P lies on 1l , ie. =→

OP

+

λ

λ

λ

1

23 , for some λ∈ℜ.

=→

BP

=

+

1

23

1

2

0

1

1

23

λ

λ

λ

λ

λ

λ

.

If APB is a right angle, 0

1

2

1

=

−•→

BP .

0

1

2

1

1

23

1

=

−•

λ

λ

λ

0)1()23(2)1( =−+−−− λλλ ⇒ 3

4=λ

=→

OP

=

=

+

7

1

4

3

1

3

73

13

4

3

41

3

423

3

4

.

Hence the coordinates of P is

3

7,

3

1,

3

4

Shortest distance between 1l and 2l

2013 Revision Package BT1 Solutions

=

4 11

3 3

4 1 13 2 units

3 3 3

141

33

BP→

= − = = −

6 6.

(i) Let AB→

= k

1

2

−2 . b =

k

2k

−2k

+

−2

1

0

=

k − 2

2k + 1

−2k

(k − 2) + 2(2k + 1) − 2(−2k) = 18

9k = 18 ⇒ k = 2

∴ b =

0

5

−4

(ii) AB→

= 2 1 + 4 + 4 = 6.

(iii) BA→

= 2 AC→

⇒ a − b = 2( c − a)

2c = 3a − b

2c = 3

−2

1

0 −

0

5

−4 ⇒ c =

−3

−1

2 .

(iv) CD→

=

2

5

−3 −

−3

−1

2

=

5

6

−5

2013 Revision Package BT1 Solutions

CB→

=

0

5

−4 −

−3

−1

2

=

3

6

−6 = 3

1

2

−2

∴ CD→

×××× CB→

=

5

6

−5 ×××× 3

1

2

−2 = 3

−2

5

4

Therefore equation of plane is

2 2 2

5 5 5 9

4 3 4

r

− −

⋅ = ⋅ = −

(v)

=

1

0

2

BD

Since 0

2

2

1

=

⋅BD , the length of projection of line BD on the plane = 5122 =+ units

7 7.

1

2

4

OA

=

����,

0

1

5

OB

=

����

1

1

1

AB OB OA

= − = −

���� ���� ����

(i) 1l :

1 1

2 1 ,

4 1

λ λ

= + − ∈

r �

2013 Revision Package BT1 Solutions

(ii)

1 1

5 1

3 1cos

35 3θ

− • − =

28.56θ = °

Acute angle between 1l and 1n is 28.56° .

Therefore, angle between 1Π and 1l is 61.4° .

(iii) Since A lies on 1Π , perpendicular distance required is 1

1

AB n

n

•����

.

1 1

1 5

1 3 9

35 35

− • − =

Perpendicular distance = 1.52 units

(iv) 2 1n AB n= ����

1 1

1 5

1 3

= − × −

2 1

2 2 1

4 2

= − = − − −

2Π : ( ) ( ) ( )2 2 4 2− − = − + + − −r i j k i j k i j ki i = – 11

2013 Revision Package BT1 Solutions

Cartesian Eqn: x – y – 2z = – 11

(v) Direction vector of 2 1 2l n n= ×

1 1

5 1

3 2

= − × − −

13

5

4

=

2l :

1 13

2 5 ,

4 4

µ µ

= + ∈

r �

8

8. (i) Since P lies on l ,

4 3

2

5

OP

λ

λ

λ

− + → = − +

for some λ ∈R .

Since

3

, 2 0.

1

OP l OP

→ → ⊥ ⋅ − =

Now

4 3 3

2 2 0

5 1

λ

λ

λ

− +

− ⋅ − = +

12 9 4 5 0

14 7

λ λ λ

λ

∴ − + + + + =

=

1

2λ =

2013 Revision Package BT1 Solutions

14 3

25

1 12 2

2 211

15

2

OP

− +

− → ∴ = − = −

+

(ii)

3 5 3 20 101 1

2 2 2 38 192 2

1 11 1 16 8

OP

− → × − = − × − = =

10

19 0

8

∴ ⋅ =

r

The Cartesian equation is 10 19 8 0x y z+ + = .

Remark: Better to use

4

0

5

instead of OP→

.

(iii)

4 3 2

2 3

5 1

k

λ

λ

λ

− +

− ⋅ = − +

8 6 2 5 3kλ λ λ− + − + + = −

3 (7 2 ) 3k λ− + − = −

7 2 0k⇒ − =

7

2k⇒ =

OR Use point P (or any point on l).

2013 Revision Package BT1 Solutions

5

22

1 3

11 1

2

k

− ⋅ = −

7

2k⇒ =

Alt. Since l lies in Π2,

2

1

l k

.

2 3

2 0

1 1

k

⋅ − =

7

2k⇒ =

(iv) Let θ be the angle between planes 1Π and 2Π .

72

10 2

19

8 1cos

525 17.25θ

=⋅

6.8θ∴ =

9

9. (a) The augmented matrix

2 2 1 4

2 3 4 1

4 3 1 2

− − = − −

The RREF of the augmented matrix

1 0 0.5 0

0 1 1 0

0 0 0 1

− = −

The final row of the RREF shows that 0 0 0 1x y z+ + = , which implies that the

system of equations is inconsistent. ∴ The equations do not have a solution.

The 3 planes represented by the 3 equations do not intersect in a point or line.

Furthermore, since neither of the planes is parallel to any other (∵ neither of the

normals is parallel to any other), the 3 planes form a triangular prism.

2013 Revision Package BT1 Solutions

(b)

2 2 5

2 3 10

1 4 10

− × =

1 2

1

A vector to both normals of and is 2

2

π π ∴ ⊥

.

(i)

( ) 1 2

2 2 4 ---------(1)

2 3 4 1 ---------(2)

When 0, 2 2 4 -------(4)

and 2 3 1 --------(5)

(5) (4) gives 1 and 1.

1, 1, 0 is a point on both and .

12 is para2

x y z

x y z

z x y

x y

y x

π π

− + = −

+ − =

= − = −

+ =

− = = −

∴ −

1 2llel to both and .

1 1a vector equation of is 1 + 2 , .

0 2l

π π

λ λ− ∴ = ∈

r �

(ii) A vector normal to π is

1

2 .

2

A vector equation of π is

1 1 11

2 1 232 2 3 2

= − =

r . .

3

6 1

6

∴ =

r . .

10 10.

2013 Revision Package BT1 Solutions

1

2 1

: 2 0l r

p q

λ

= +

� and 1

2

: 2 2r

p

Π ⋅ = �

Since 1l lies on 1Π ⇒

2 1

2 1 2 2 (shown)

1

p

p

⋅ = ⇒ = −

Also since 1

1

1

1

l

1 1

0 1 0 1

1

q

q

⋅ = ⇒ = −

Therefore, 1

2 1

: 2 0

2 1

l r λ

= + − −

When

1

3, 2 (verified)

1

r OAλ→

= − = =

2 2

2 1 2 1

Normal of is 2 0 0 2 0

2 1 2 1

n

Π = × = = − − − −

Thus 2

1

: 0 0

1

r

Π ⋅ = �

And 3

1 2 1

: 5 1 5 10

1 3 1

r

Π ⋅ = ⋅ = �

1 1 0

3 2 1

2 1 1

AB OB OA

− −

= − = − =

→ → →

Thus length of projection of 3 on AB Π→

= 3

3

nAB

→�

2013 Revision Package BT1 Solutions

0 11

1 527

1 1

41

127

1

18 2

27 3

= ×

= −

= =

x + y + z = 2, x + z = 0 and x + 5y + z = 10, intersects at 1l .

Otherwise method

3 3

2 1 2

For , 2 5 10 2 lies on

2 1 2

Π ⋅ = ⇒ Π − −

.

When 3

3 1 3 3

1, 2 5 10 2 also l 2 ies on

3 1 3 3

λ

= ⋅ = ⇒ Π − − −

.

Since

2

2

2

,

3

2

3

lies both on 1 3 and l Π

⇒ 1 2 3, and Π Π Π all intersects on the line 1.l

Solving method

2013 Revision Package BT1 Solutions

1 1 1 2

1 0 1 0

1 5 1 10

1 1 1 2 1 0 1 0

1 0 1 0 0 1 0 2

1 5 1 10 0 0 0 0

rref

x

y

z

=

⇒ →

Thus y = 2, x + z = 0.

Let ,z xµ µ= = −

Thus

0 1

2 0

0 1

r µ

= +

� which is line 1.l

⇒ 1 2 3, and Π Π Π all intersects on the line 1.l

11

(i)

(ii)

(iii)

=→

0

3

6

OA and

=→

6

0

0

OV

=∴→

2

1

2

3AV

Equation of AV is

r

+

=

2

1

2

6

0

0

λ , ℜ∈λ or r

+

=

2

1

2

0

3

6

λ , ℜ∈λ

Equation of l is r

+

=

2

1

10

2

4

µ

t

If AV and l intersect, let

+

+−

−−

=

+ µ

µ

µ

λ

λ

λ

2

2

104

26

2

t

⇒ )1.....(..........2−=− µλ and 25 −=+ µλ ……….(2)

Solving eq (1) & (2) we have 0=µ and 2−=λ .

2013 Revision Package BT1 Solutions

=

2

2

4

MO�

. Also, 2262 =⇒+=+ tt λµ

Acute angle between AV and line l = 1

2 10

cos 1 . 1 / 9 105 60.8

2 2

= °

AM =

2

1

2

Perpendicular distance required = 079.60sin

AM = 2.62 units

12 or OA

8 4

OZ OA AZ OB= + +

= +i k

���� ���� ���� ���� ����

By ratio Theorem

8 1 8 11 1 1

0 4 41 1 1 1 1

4 0 4

OP OZ OC

λλ λ

λ λ λ λ λλ

+

= + = + = + + + + +

���� ���� ����

Since OP ⊥⊥⊥⊥ CZ,

0

7

4

4

OP CZ

CZ OZ OC

=

= − = −

���� ����i

���� ���� ����

8 1 71

4 4 0 56 7 16 16 0 8

4 4

λ

λ λ λ

λ

+

− = ⇒ + − + = ⇒ =

i

1 1 41 4

4 81 1 / 8 9

1 / 2 1

OP

+

= = +

����

2013 Revision Package BT1 Solutions

2 2 244 8 1 4

9OP = + + =����

7 / 9 71

32 / 9 329

-32 / 9 -32

BP OP OB

= − = =

���� ���� ����

The direction vector of line BP is

7

32

32

.

Cartesian Equation of line BP:

1 4

7 32 32

x y z− −= =

− or equivalent

(i)

(ii)

(iii)

Write down the position vector of Z in terms of i, j and k.

The point P divides CZ such that 1

CP

PZ

λ==== . Given that OP

���� is perpendicular to CZ

����, find the

value of λ and evaluate OP����

.

Find a cartesian equation of the line BP.

Ans: (i) 8 4OZ = +i k����

; (ii) 1

8λ = ; 4OP =

����; (iii)

1 4

7 32 32

x y z− −= =

13

3 1

4 2 , for some

1 0

OP s s

= + ∈

→� .

2013 Revision Package BT1 Solutions

(i)

(ii)

(iii)

Since OP is perpendicular to l,

1

2 0

0

OP•

∴ =

3 1

4 2 2 0 3 8 4 0

1 0

s

s s s•

− − ⇒ + = ⇒ − + + + =

1s⇒ = −

So,

3 1 4

4 2 2

1 0 1

OP

= + − =

→ #

Let

3 1 6 1

4 2 3

1 0 0

s a t

a

+ = +

3 6 (1)

4 2 3 (2)

1 (3)

s t

s a t

at

− = + − − − − − − − − − − −

⇒ + = + − − − − − − − − − − − = − − − − − − − − − − −

From (1) : 3s t= − − ------------------- (4)

Sub (4) into (2) : 4 2( 3 ) 3t a t+ − − = +

5 2t a⇒ = − − ----------- (5)

Sub (5) into (3) : 5 ( 2 )a a= − −

2 2 5 0a a⇒ + + =

2( 1) 4 0a⇒ + + =

Since, there are no real solutions for the equation 2( 1) 4 0a + + = , therefore there does not exist

real values of a such that the two lines l and m intersect. Hence, the 2 lines do not have a common

point.

2013 Revision Package BT1 Solutions

o 2 2

2 2

1 0

3 0

1 1 10cos60 4 10

2 310 .1 10

a aa a a

a a

= ⇒ = ⇒ = + ⇒ = ±

+ +

14

(i)

(ii)

(iii)

(iv)

(v)

Since AB ⊥����

1Р, AB����

//

1

2

2

i.e.

1

2 .

2

AB k

= −

����

2 2

2 1 2 1

2 0 2

k k

OB AB OA k k

k k

− −

= + = + = + − −

���� ���� ����

B lies on 1Π , so

1 2 1

2 18 2 1 2 18 9 18 2

2 2 2

k

OB k k k

k

⋅ = ⇒ + ⋅ = ⇒ = ⇒ = − − −

����

0

5

4

OB

∴ = −

����

Perpendicular distance from A to 1Π ( )22 22 4 4 6AB= = + + − =

����

By Ratio Theorem,

( )2 13

2 1 2

2 0 31

3 1 5 12

0 4 2

OC OBOA OC OA OB

OC

+= ⇒ = −

+

− −

∴ = − = − −

���� �������� ���� ���� ����

����

2 3 5 0 3 3

5 1 6 , 5 1 6

3 2 5 4 2 6

CD CB

− −

= − − = = − − = − − − −

���� ����

2013 Revision Package BT1 Solutions

5 3 6 2

6 6 15 3 5

5 6 12 4

CD CB

− −

× = × = = − −

���� ����

Therefore equation of plane DBC is

2 2 2

5 5 5 9

4 3 4

− −

⋅ = ⋅ = −

r

2

0

1

BD OD OB

= − =

���� ���� ����

Length of projection of line BD on 1Π

2 1 2

0 2 5

1 2 4 4 25 165

1 1 4 4 9

2

2

× − + +

= = = =+ +

15 [HCI 2007 Prelims]

Sub. equation of line into plane:

1 0 1

1 1 . 0 3

0 1 2

+ =

λ µ and get 3 2λ µ= − .

Sub. 3 2λ µ= − into 2Π :

1 0 3 2

(3 2 ) 1 1 3 1

0 1 0 1

µ µ µ

= − + = + −

r

To show the two lines are parallel:

The direction vector of 2l is scalar multiple of direction vector of 1l , thus 1l and 2l are parallel.

Note that B lies on 2l , thus

Shortest distance

2 0 2 21 1 1 30

1 2 1 036 6 6

1 0 1 4

AB

= × = × = = − − −

����

(i)

(ii)

(iii)

2013 Revision Package BT1 Solutions

Let

3 2

1 1

0 1

OC α

= + −

���� for some α ∈�

0 0 2

0 2 2 1 0 2

0 0 1

BA BC α α

⋅ = ⇒ − ⋅ − + = ⇒ = −

���� ����.

7

3

2

OC

∴ = −

����

7 0 7

Since , 3 2 . 5

2 0 2

CD BA OD OD

= − = ∴ = − −

���� ���� ���� ����

Observe that O lies on 2Π . Midpoint of OA which is ( )3 12 2, , 0 then lies on 3Π .

Since

1 0 1

1 1 1

0 1 1

= × = −

2n ,

32

12

1 1 1

1 1 1 1

1 0 1 1

⋅ − = ⋅ − ⇒ ⋅ − =

r r (shown)

Let F be foot of perpendicular from A to 3Π and pick a point E (1, 0, 0) on 3Π .

1 1 11 1 1

1 1 133 3

1 1 1

AF AE

= ⋅ − − = − −

���� ����

81

43

1

OF OA AF

∴ = + = −

���� ���� ����

16

(i)

(ii)

[NJC 2007 Prelims]

BN ⊥ 1Π ⇒ BN // n ⇒ BN k= n

Since N lies on 1Π ,

1

2 4

1

ON

⋅ − =

����

But

7 1

18 2

1 1

ON OB BN k

= + = + − −

���� ���� ����, so

7 1

18 2 2 4 8

1 1

k

k k

k

− +

− ⋅ − = ⇒ = − +

2013 Revision Package BT1 Solutions

7 8 1

18 16 2

1 8 7

ON

− +

∴ = − = − +

����

⊥ distance from B to 1Π ( )( )22 2

1

8 2 8 1 2 1 8 6

1

BN

= = − = + − + =

����

To verify that point A lies on 1Π :

LHS

2 1

0 2 2 2 4

2 1

= ⋅ − = + = =

RHS (Verified)

Let B′ be the reflection of B in 1Π .

By midpoint theorem,

( )1 2

2AN AB AB AB AN AB′ ′= + ⇒ = −���� ���� ����� ����� ���� ����

1 2 7 2 7

2 2 0 18 0 14

7 2 1 2 13

AB

− − − ′∴ = − − − = − − − −

����� , which is parallel to

7

14

13

− −

.

2 1Π Π⊥ ⇒ 2Π //

1

2

1

Direction vector of line l =

7 2 9 3

18 0 18 3 6

1 2 3 1

AB

− − −

= − = = − − − − −

����

Normal vector of 2Π

1 3 4

2 6 2

1 1 0

= − × − =

Equation of 2Π :

4 2 4 4

2 0 2 2 8

0 2 0 0

⋅ = ⋅ ⇒ ⋅ =

r r

Note that the triangle ABN is a right-angle triangle with 90ANB∠ = ° .

2013 Revision Package BT1 Solutions

( )2 2 2

3

3 6 3 3 6 1 3 46

1

AB

= − − = + + =

����

By Pythagoras’ Theorem,

Distance of A from 3Π ( ) ( )( )2 2 9 46 64 6 30AN AB BN= = − = − =

Acute angle between l and 3Π

= 1 1 8 6

cos cos 15.63 46

BNABN

AB

− − ∠ = = = °

(to 3 s.f.)

17

a

b

[MI 2007 Prelims]

Let 1

3, 23

xz yµ

+= = + = . Then 3 1, 3, 2x z yµ µ= − = − = .

2

1 3

: 3 1 ,

2 0

l µ µ

= − + ∈

r �

To check if lines intersect:

1 2 1 3

3

1 2

λ µ

λ µ

λ

+ − +

= − + −

2 3 2 -----(1)

3 -----(2)

1 -----(3)

λ µ

λ µ

λ

− = −

⇒ − = −− =

Solving equations (2) & (3): 1λ = − and 1 3 2µ = − + =

Substitute into equation (1): LHS ( ) ( )2 1 3 2 8 RHS= − − = − ≠

Therefore the lines do not intersect.

Let the angle between a and b be θ .

( )

( )( )

2

2

cos

3 2 3 cos5

4.15 (to 3 s.f.)

θ

π

− ⋅ = ⋅ − ⋅

= −

= −

=

a b a a a b a

a b a

2013 Revision Package BT1 Solutions

Chapter 18: Complex Numbers 1

1 [SAJC/2010/Prelim/P1/Q4]

(a) 2 3 4w i= +

Let w x iy= +

2( ) 3 4x iy i+ = +

2 22 3 4x xyi y i+ − = +

2 2 3x y− = ----- (1)

2 4xy = ----- (2)

From eq (2): 2

yx

=

Sub into eq (1):

22 4 22

3 3 4 0x x xx

− = ⇒ − − =

Solving, we get 2x = ± , 1y = ±

Hence (2 )w i= ± +

(b) Let 4 16z = −

14

4

4 ( 2 )

( 2 )

16

16

2 , 2, 1,0,1

i

i k

i k

z e

z e

z e k

+

+

=

=

= = − −

π

π π

π π

3 34 4 4 42 , 2 , 2 ,2

i i i iz e e e e

π π π π− −=

2 [MI/2010/Prelim/P2/Q2]

(i) 5 (2 )

2

5

32 32

2 where 2, 1,0

i k

ki

z e

z e k

π

π

= =

= = ± ±

(ii)

(iii)

5

5 32 1 02

ww

− − =

1z 2z

3z 4z

Re(z)

Im(z)

2

O

Re (z)

Im (z)

2

5

π

2

5

π−

2

5

π

2

5

π

2

5

π

2Z

3Z

4Z

1Z

2013 Revision Package BT1 Solutions

5

32

12

w

w

= −

2

5

2 2

5 5

2

5

2

5

2

5

5 5 5

2

12

2

2

1

2

ki

k ki i

ki

ki

ki

k k ki i i

we

w

w we e

ew

e

ew

e e e

π

π π

π

π

π

π π π

=

= −

=

=

5

5

2

2 Im

ki

ki

ew

e

π

π

=

cos sin5 5

sin5

cot5

1

1 cot (shown)5

k ki

wk

i

k

wi

kw i

π π

π

π

π

+

=

= +

= −

3 [ACJC/2010/Prelim/P1/Q4]

1

* 3

i

w

−=

2arg

* 2 3 6

i

w

π π π− = − − − =

1 1 3 1 3 1cos sin

* 3 6 6 3 2 2 6 6

ii i i

w

π π − = + = + = +

*

ni

w

is purely imaginary, ( )2 1 , 6 2

n k kπ π

= + ∈� ,

2013 Revision Package BT1 Solutions

( )3 2 1 ,n k k∴ = + ∈� .

4 [ACJC/2010/Prelim/P1/Q5]

24 4 20 ,

i k

z i z i e k

ππ

+

− = ⇒ = = ∈�

12

4 2

7 3 5

8 8 8 8

, 2, 1,0,1

, , ,

i k

i i i i

z e k

z e e e e

ππ

π π π π

+

− −

= = − −

=

5

81

82

i

i

z e

z e

π

π

=

=

( )1 2

1 4 3arg

8 2 8 8z z

π π π + = + =

5 [RI/2010/Prelim/P1/Q1]

Let z = x + iy. Substitute the second equation into the first.

2

2 2 2

2 2 2

( * (1 i)) 2 0

( i ) ( )(1 i) 2 0

2 2i ( )i 2 0

z z z

x y x y

x xy x y

+ + − =+ + − =+ + − =+ + − =

+ + + + − =+ + + + − =+ + + + − =+ + + + − =

+ + + − =+ + + − =+ + + − =+ + + − =

On comparing real and imaginary parts, 2 2 2 22 2 0, 2 ( ) 0x xy x y x y− = + + = + =− = + + = + =− = + + = + =− = + + = + =

1, 1x y= ± == ± == ± == ± = ∓ .

When 1 iz = −= −= −= − , w = 2i

When 1 iz = − += − += − += − + , 2iw = −= −= −= −

6 [NYJC/2010/Prelim/P1/Q2]

(1+ai)(b+2i) = 8i

=> (b-2a)+(ab+2)i = 8i

Comparing real/imaginary parts, b-2a = 0 and ab+2 = 8

i.e. b = 2a and a(2a) + 2 = 8

i.e. 2

a = 3

i.e. a = - 3 (since a < 0) and b = - 2 3

w = - 2 3 - 2i => arg(w) = 5

6

π−

z1

z2

z2 + z2

x

y

8

π

5

8

π

O

2013 Revision Package BT1 Solutions

Hence, arg(wn) = 5

6

nπ−

∴Least n = 3

(then argument is 5

2

π−, so that wn is of form – ki with k > 0).

7 [DH/2010/Prelim/P1/Q7]

(i) No. The statement is not always true. It applies only for (polynomial) equation in z with real

coefficients.

(ii) 4 3+ i 0z + = ⇒

4 3 iz = − −

5i

4 62ez

π − =

1 1

4 4

1 5 (12 5)i ( 2 ) i4 6 242 e 2 e

kk

z

π ππ

−− +

= = , 0,1, 2,3k =

1 1 1 1

4 4 4 4

5 7 19 17-i i i -i

24 24 24 242 e or 2 e or 2 e or 2 ezπ π π π

∴ =

(iii)

(iv) The quadrilateral is a square.

Let the length of each side be L

Pythagoras Theorem:

12 2 242| | =2(2 ) 2 2L z= =

8 [YJC/2010/Prelim/P1/Q9]

(a) z = 1 + ip , w = 1 + iq

zw = (1 + ip)(1 + iq)

3 – 4i = 1 – pq + i(p + q)

∴ 3 = 1 − pq … … (1)

& � 4 = p + q ⇒ q = – 4 – p

Substitute into (1) ⇒ 3 = 1 − p(– 4 – p)

p2 + 4p – 2 = 0

p = 62)1(2

)2)(1(4164±−=

−−±−

Since p > 0 ∴ p = 62 +− //

Im

L

Re

L

2Z

3Z

4Z

O

1Z

2013 Revision Package BT1 Solutions

q = – 4 – ( 62 +− ) = 62 −− //

(b) a = 1 + i 3 =

3

i

2

π

e

∴ 1 + a + a2 + a3 + … + a9 = a

a

1

1 10

= )3i1(1

21

10

3 i

+−

π

e

= 3i

21 3

2 i

10

π

e

= 3i

)i(2123

2110

−−−

=3i

i 3512513

+

3i

3i×

= i 3171512 +− //

9 [SRJC/2010/Prelim/P1/Q11]

(i) z5 = 32eπ + 2kπ( )i

, k = 0,±1,±2

2

52 , 0, 1, 2

ki

z e k

π π+ = = ± ±

52i

z e

π

= ,

3

52i

e

π

, 52i

e

π−

, 2 ie

π,

3

52i

e

π−

(ii) w5 = 32i ( )

55 32 32iw iw⇒ = − ⇒ = −

Let z iw= ⇒ w iz= −

Area of triangle OW1W21 2

2 2 sin 1.902 5

π= × × × = units2.

(iii) ( )3 3

5 5 5 52 2 2 2 2i i i i

iz e z e z e z e z e

π π π ππ

− − − − − − −

2 R

e

I

m

2013 Revision Package BT1 Solutions

Re( )z

Im( )z

1

1

–1

–1 ××××

××××

××××

××××

××××

O

( )3 3

2 25 5 5 52 4 2 4 2i i i i

z z e e z z e e z

π π π π− −

− + + − + + +

( )2 2 34cos 4 4cos 4 2

5 5z z z z z

π π − + − + +

p = 4,α =π

5,β =

5,k = 2

10 [NJC/2010/Prelim/P1/Q10]

(a) 2 *( i) 16 i 0z a z b+ − + + =

( ) ( )

( )

22 3i ( i) 2 3i 16 i 0

5 12i 2 3 i 2i 3 16 i 0

8 2 10 3 i 0

a b

a a b

a a b

+ + − − + + =

⇒ − + + − − − + + =

⇒ + + − + =

By comparing real and imaginary coefficient,

Real: 8 2 0 4 (ans)

Im :10 3 0 22 (ans)

a a

a b b

+ = ⇒ = −

− + = ⇒ = −

(b) 5 1 0z + =

( )

( )

5

5

5 iπ

i 2 1 π5

i 2 1 π

5

1 0

1

e

e

e , 0, 1, 2

k

k

z

z

z

z

z k

+

+

+ =

= −

=

=

= = ± ±

iπ iπ i3π i3π

5 5 5 51, e , e ,e ,ez− −

= −

(i)

2 2 2

2

2

i i ii

i

i

1 e e e e

e cos isin + cos i sin2 2 2 2

2cos e (shown)2

θ θ θ

θ

θ

θ

θ θ θ θ

θ

− + = +

= − + − +

=

(ii) Replace complex number z with 1w − ,

( )

( )

( )

i 2 1 π

5

i 2 1 π

5

i 2 1 π

5

e

1 e

1 e

k

k

k

z

w

w

+

+

+

=

⇒ − =

∴ = +

2013 Revision Package BT1 Solutions

From (i),

( ) ( ) ( )i 2 1 π

5

2 1 πi

102 1 π

1 e 2cos e 10

k kk

w

+ ++

∴ = + =

for 0, 1, 2k = ± ± .

2013 Revision Package BT1 Solutions

Chapter 19: Complex Numbers II

1 [TPJC/2010/Prelim/P2/Q2]

( ) ( ) ( ) ( )π

arg i 0 arg arg i 0 arg2

z z z= ⇒ + = ⇒ = −

(i) maximum value of 14 3 8 11z AP+ = = + =

(ii) 2 2

2

8 4 3 4 3 3tan

4 4OAP

− − −= =

( )1 4 3 3tan arg 4 π

4z

− −

∴− ≤ + ≤

or ( )0.776 rad arg 4 πz− ≤ + ≤

2 [YJC/2010/Prelim/P2/Q3(b)]

C (–1, 1)

51 −=− zz

3

4

π−

O B

2

2i1 =−+w

5 1

2013 Revision Package BT1 Solutions

(i) Min value of 2=− wz

(ii) Intersection point at B = w

22 −=−== OCCBOBw

4

argπ

−=w

( )

−=∴ 4 i

22

π

ew

( )( )i112 −−=

( ) ( )i1212 −−−=

3 [ACJC/2010/Prelim/P2/Q2]

(i)

(ii) Least value of z w− = 1

(iii) Greatest ( )arg 3z + = 1 11 3

tan sin 0.826 (3 dp)5 26

− − + =

Least ( )arg 3z + = 1 11 3

tan sin 0.432 (3 dp)5 26

− − − = −

4 [CJC/2010/Prelim/P1/Q11]

(a)(i)

[k=0]

[k=1]

[k= –1]

[k=2]

[k= –2]

[k= –3]

x

y

i (2,1)

O −3

(5,−3)

o

2

3

26

3

3

z

w

2013 Revision Package BT1 Solutions

(ii)

Equation of circle:

(b)(i) iiz +−≤+− 3223

( ) 11223 +≤−− iz

( ) 1323 ≤−− iz

Circle, center (3, -2), radius

half-line from point (6, -5), arg =

Area of shaded region = = =

5 [JJC/2010/Prelim/P1/Q8]

(a) 13 13pq i= +

( )( )2 13 13

2 2 13 13

( 2 ) ( 2) 13 13

ia b i i

b i abi a i

a b i ab i

+ − = +

− + + = +

+ + − = +

Comparing real and imaginary parts,

2 13 - (1)

2 13 - (2)

a b

ab

+ =

− =

(2): 15

ba

=

Subst. 15

ba

= into (1):

Re(z)

Im(z)

z1

z6

z5

z4

z3

z2

(3, -2)

(6, -5)

2013 Revision Package BT1 Solutions

( )( )

2

152 13

13 30 0

3 10 0

3 or 10

35 or

2

aa

a a

a a

a

b

+ =

− + =

− − =

=

=

(i)

2 2

Least

4 1

17

z OP=

= +

=

2 2

Greatest

4 3 2

7

z OQ=

= + +

=

(ii)

1

Max arg( )

4tan

4

4

z i PAR

π

− = ∠

=

=

6 [MI/2010/Prelim/P1/Q10]

(a) Given that 1 iz k= + is a root, so substitute into the given equation

( ) ( ) ( ) ( )4 3 2

1 i 1 i 9 1 i 29 1 i 60 0k k k k+ − + − + + + − =

( ) ( )2 3 4 2 3 21 4 i 6 4 i 1 3 i 3 i 9 18 i 9 29 29 i 60 0k k k k k k k k k k+ − − + − + − − − + − + + − =

(4, 3)

y

O 4

3

Locus of z

P (4, 1)

Q

A(0, 1)

R (4,5)

2013 Revision Package BT1 Solutions

Comparing the real or imaginary parts on both sides,

3 3 34 4 3 18 29 3 12 0

2 or 0 (N.A.)

k k k k k k k k

k k

− − + − + = − + =

⇒ = ± =

OR, 2 4 2 2 4 26 3 9 9 31 6 40 0

By GC, 2

k k k k k k

k

− + + − + − = + − =

⇒ = ±

Hence, ( )( ) ( )( ) 21 2i 1 2i 2 5z z z z− − − + = − + is a factor of the given equation

( )( )4 3 2 2 29 29 60 2 5 12 0z z z z z z z z− − + − = − + + − =

( ) ( )2 22 5 0 or 12 0

1 2i , 4 or 3

z z z z

z z z

− + = + − =

∴ = ± = − =

(b) (i)

(ii) min. (arg z) = argument of any complex numbers along CD

1 2tan

2

4

π

−=

=

At A, 2 2 and 2 2x y= − = + . -----(1)

max. (arg z) = argument of a, where A ≡ a

1

1

tan -----(2)

2 2tan

2 2

AB

OB

=

+= −

Hence, ( ) 1 2 2arg tan

4 2 2z

π − +

≤ ≤ −

(Shown)

7 [PJC/2010/Prelim/P2/Q5]

i 2i 2 2z − − ≤ and ( )Re 1 3iz > +

( )3

arg 2 24

z iπ

− − =

( )arg 2 24

z iπ

− − =

2

2 0 B

D A

x

y

C α α Note : α = π/4

2013 Revision Package BT1 Solutions

i 2+2i 2z − ≤ and ( )Re 2z >

( )2 2i 2z − − ≤ and ( )Re 2z >

( )arg 2 2i2 2

zπ π

α

− < − − ≤ − −

( ) 1 2arg 2 2i sin

2 2 4z

π π − − < − − ≤ − −

( )arg 2 2i2 3

zπ π

− < − − ≤ −

At maximum ( )arg 2 2iz − − ,

( )2 2cos ( 2 2sin )iz α α= + + − +

2 2cos ( 2 2sin )i6 6

zπ π

= + + − +

( )2 3 iz = + −

1 2d k d≤ <

2 21 2 3k≤ < +

1 13k≤ <

8 [SAJC/2010/Prelim/P2/Q3]

•(5,−2)

Im (z)

(2,2)

α

(2,−2)×

Re (z)

locus of z

2

2

πα−

α d1

d2

2013 Revision Package BT1 Solutions

(a) 0 arg( 1 )2

≤ + − ≤z iπ

and 2z i− =

Let P represent the complex number z x iy= + .

2cos 24

a x= = =π

2sin 24

b = =π

2 1y = +

( )2 2 1z i∴ = + +

(b) (i)

33 3

2 cos sin cos sin4 4 6 6

w i iπ π π π

= + −

Let 13 3

cos sin4 4

w iπ π

= +

2 cos sin6 6

w iπ π

= −

( )( )31 22∴ =w w w

3

1 22 2(1)(1) 2= = =w w w

( )( )( )3

1 2

1 2

arg( ) arg 2

arg(2) arg( ) 3arg( )

w w w

w w

=

= + +

30 3

4 6

4

= + + −

=

π π

π

2 cos sin4 4

w iπ π

∴ = +

(ii) 2 cos sin4 4

n n n nw i

π π = +

2

(0,1)

4π b

a

Re(z)

1

-1

P(x,y)

Im(z)

0

arg( 1 )z i+ − = 0

arg( 1 )z i+ − = 2π

2013 Revision Package BT1 Solutions

Since 4 , n k k= ∈�

4

4

4

4 42 cos sin

4 4

2 cos

( 1) 2

n k

k

k k

k kw i

k

π π

π

= +

=

= −

9 [SRJC/2010/Prelim/P1/Q7]

(a)(i) 64 3 16 0ww i iw∗ + + =

( )( ) ( )64 3 16 0x yi x yi i i x yi+ − + + + =

2 2 64 3 16 16 0x y i ix y+ + + − =

( ) ( )2 2 16 16 64 3 0x y y x i+ − + + =

Comparing coefficients,

( )16 64 3 0x + = and ( )2 2 16 0x y y+ − =

4 3x = − 2 16 48 0y y− + =

( )( )4 12 0y y− − =

y = 4 since y < 5

4 3 4w i∴ = − +

(ii) 8w = , ( )5

arg6

= , thus 5 5

8 cos sin6 6

n n n nw i

π π = +

Since n

w is to real, Im ( ) 0nw = , 5

,6

nk k

ππ= ∈�

6

,5

kn k⇒ = ∈�

(b) 1 3 1z i iz− − = +

Let z x iy= + , then ( )1 3 1x iy i i x iy+ − − = + +

( )1 1 3 1x i y ix y− + − = + −

( ) ( ) ( )1 1 3 1x i y y ix− + − = − +

( ) ( ) ( )2 2 221 1 3 1x y x y− + − = + −

( )2 2 2 22 1 2 1 9 1 2x x y y x y y− + + − + = + − +

2 28 2 8 16 7x x y y+ + − = −

2013 Revision Package BT1 Solutions

( )2

21 91

8 64x y

+ + − =

The locus is a circle of centre 1

,18

of radius 3

8units.

10 [VJC/2010/Prelim/P2/Q1]

y

x 0 2

8

1

8−

4

8−

31

8

1

5

8

×