Reliability and probability of failure in structural fire...

Post on 18-Feb-2019

224 views 0 download

Transcript of Reliability and probability of failure in structural fire...

Reliability and probability of failure in structural fire safety engineeringAn introduction

Ruben Van Coile

Structures in Fire Forum, April 12, 2016

2

I.Whyuseprobabilisticcalculations?

3

I.Whyuseprobabilisticcalculations?

Perfectsafetydoesnotexist

4

I.Whyuseprobabilisticcalculations?

It’sthebasisoftheEurocodes andBS

5

I.Whyuseprobabilisticcalculations?

Perfectsafetydoesnotexist It’sthebasisoftheEurocodes andBS

Decisionmakingandcostoptimization

6

I.Whyuseprobabilisticcalculations?

II.Basicconceptsforcalculatingfailureprobabilities

III.Discussion

Perfectsafetydoesnotexist It’sthebasisoftheEurocodes andBS

Decisionmakingandcostoptimization

PerfectsafetydoesnotexistEverystructureorstructuralelement

hasaprobabilityoffailure

7

Theloadeffectexhibitsrandomvariations

(Baldwinetal.,1970)

8

Materialpropertiesexhibitrandomvariations

Figure II.2: Observed mean minus specified strength and standard deviation of standard cube strength of 88 production units of concrete grade C35 (Rackwitz 1983)

9

(Caspeele,2010)

Engineeringmodelsandcalculationtoolsareimperfect

10

(Soetens,2015)

Load E Resistance R

Situations with failure

Thus:Evenforagooddesign,theloadEmaybelargerthantheresistanceR

11

Boththe loadeffectE and the resistance R

exhibit randomvariations

Load E Resistance Rprior to fireResistance R

during fire

12

Thus:Evenforagooddesign,theloadEmaybelargerthantheresistanceR

Situations with failure

13

LimitingtheprobabilityoffailurebydesignThebasisoftheEurocodes

TheEurocodespecifiesatargetsafetylevel/failureprobability

Targetreliabilityindexinfunctionoftheconsequencesofstructuralfailure(normaldesignconditions)

• Eurocodepartialsafetyfactorsderivedfromthetarget

safetylevel

• ApplicationofEurocodedesignrulesresultsinasafety

levelof3.8

(generallyslightlyhigherbecauseofconservatism)

Unfortunately,notargetisspecifiedforstructuralfiresafety

• TargetreliabilitiesintheEuropean

NaturalFireSafetyConcept

(backgrounddocuments)

• Back-calculatingtheBStarget

reliabilityindexforspecificcases

Butoptions doexist

• Cost-optimization:

Whatistheoptimumlevelof

structuralfireresistance?

(VanCoile, 2015)

Isthereanoptimumlevelofinvestmentinstructuralfiresafety?Decisionmakingand

costoptimization

16

Isthereanoptimumlevelofinvestmentinstructuralfiresafety?

Utility function: ( ) ( ) ( ) ( )Y p B p C p D p= − −

Benefitfunction

Initial construction

cost

Expected costs due to failure

and partial damage

p =theoptimizationparameter

Includes• [Annual]Probabilityofafullydeveloped fire(λ*)

• Probabilityoffailure givenafullydeveloped fire(Pf,fi)

• Failurecostsandrepair/reconstructioncostsincaseofpartialdamage(ξ)

Optimizationcriterion:MaximizeY

Isthereanoptimumlevelofinvestmentinstructuralfiresafety?

Safetyinvestmentcostfactor

ISO834fire exposure,given λ* 120minISO834fireexposure

Butcost-optimizationisnosilverbullet

• Parametersofcost-optimizationareuncertain

• Stakeholdersmaynotallagreeoneachinputparameter

• Casespecificevaluationsarenotalwaysfeasible needforgeneralrules

DetermineanAcceptableRangeforthestructuralfireresistancetime

Basedonresultsofcost-optimization,i.e.

• failureprobabilities• fireignition frequencies

• failurecosts…

ξ =350

Anacceptablerangeforthestructuralfireresistancetime

ξ failurecostratio

Avoidingoverinvestment

Avoidingunderinvestment

Acceptable Range20

BasicconceptsforcalculatingfailureprobabilitiesAconceptualintroduction

21

ThelimitstatefunctionZHowdoyoudefinefailure?

22

! = # − %Generalformula ! = # − % < 0Failure

! = # − % ≥ 0Safe/Success

“Load” E “Resistance” R

Situations with failure

UseMonteCarlomethods

Orevaluate/knowthePDF

)* = + ! = # − % < 0

ThelimitstatefunctionZApplicationtofire-exposedstructuralmembers:cross-sectionbased

23

! = # − %Generalformula PureBending

! = ,-.-,*0,1 − ,2 .3 +.5

10000MonteCarlo

andMixedLNapproximation

ThelimitstatefunctionZApplicationtofire-exposedstructuralmembers:advancedmodels(2nd ordereffects)

24

! = # − %Generalformula

6)ButthemomentmE depends

onthedeflection…

Doomedtocomputationally

expensiveMonteCarlo?

Adetourtoafeasiblecalculationmethod…Evenforverycomplexmodels,thePDFofascalarmodeloutputY canbeapproximated“quickly”

25

Simpleexample

7 = 29:9;9<With:

X1 :LN(3;0.3)

X2 :LN(4;0.5)

X3 :LN(2;0.2)

Y:LN(12.48;0.646)

10000MCS

ThelimitstatefunctionZApplicationtofire-exposedstructuralmembers:advancedmodels(2nd ordereffects)

26

! = # − %Generalformula

6)

Asthereascalarmodeloutput

whichisrepresentativeforthe

resistanceR?

Foreverycolumnrealizationthereisa

maximumloadPmax

(takingintoaccount2nd ordereffects)

=runmodeltofailure10000MCS

ThelimitstatefunctionZApplicationtofire-exposedstructuralmembers:advancedmodels(2nd ordereffects)

27

! = # − %Generalformula

6)

Eccentricloadingincl.2nd order

! = ,-)=>?,*0,1 − ,2 )3 + )5

Failureprobabilityevaluationfeasible

withPDFofPmax approximated

DiscussionHowtodefine“failure”forstructuralsystemsexposedtofire?

4.Other…

NeedtodefinealimitstatefunctionZAnddeterminearepresentativescalarmodeloutputY

29

! = # − %Generalformula Options

! = ,-@- − ,2@21.RunthemodelforISO834exposuretillfailure tR

! = ,-A=>? − ,2A22.Runthemodelforincreasingfireloadtillfailure qmax

! = ,-B=>? − ,2BC0=013.Determinearepresentativefailureindicator e.g vmax

Toapplyreliabilityconceptstostructuralsystemsexposedto

fire,weneeda“performanceindicator/criterion”

30

Summary/Conclusions

StandardreliabilitycalculationsarebasedonalimitstatefunctionZ

Perfectsafety doesnot exist.

Everystructure orstructural elementhasaprobability offailure

Needtodefineperformanceindicators/criteriaforstructuralfire

Limiting the probability offailureisthe very goalofthe Eurocodes

Probabilisticcalculationsforcost-optimizationanddecisionmaking

Thank you for your attention !

31