Recent Progress and Future Developments in Gravitational Physics

Post on 06-Jan-2016

46 views 3 download

description

Recent Progress and Future Developments in Gravitational Physics. Gerhard Schäfer Institute for Theoretical Physics Friedrich-Schiller-University Jena www.tpi.uni-jena.de. Budapest, 29. August 2002. Contents. The most Fundamental Principles in Physics - PowerPoint PPT Presentation

Transcript of Recent Progress and Future Developments in Gravitational Physics

1/40

Recent Progressand Future Developmentsin Gravitational Physics

Gerhard Schäfer

Institute for Theoretical PhysicsFriedrich-Schiller-University Jena

www.tpi.uni-jena.de

Budapest, 29. August 2002

2/40

Contents

The most Fundamental Principles in Physics

Testing the Principle of Lorentz Invariance

Testing the Equivalence Principle

Universality of Free Fall

Universality of Gravitational Red Shift

Predictions of General Relativity

Evidence for Black Holes

Detection of Gravitational Waves

Cosmology

Beyond General Relativity

3/40

The Principle of Lorentz Invariance

Universal constant: speed of light

Resulting framework: Special Theory of Relativity

Unification of space and time:

spacetime

Fundamental Principles in Physics

2 2 2 2 2 2ds c dt dx dy dz

c

4/40

The Principle of Equivalence of Gravitation and Inertia

Universal constant:

Resulting framework: General Theory of Relativity

Unification of inertia and gravity:

curved spacetime

Fundamental Principles in Physics

4

1 8

2

GR Rg T

c

4G c

5/40

The Principle of Superposition of Microscopic States

Universal constant:

Resulting framework: Quantum Theory

Unification of particles and fields: quantum fields

Fundamental Principles in Physics

i H

6/40

Principle of Lorentz Invariance

Robertson-Mansouri-Sexl line element (for )

Propagation of light:

anisotropy: Michelson-Morley

velocity dependence: Kennedy-Thorndike

anomal time dilation: Doppler shift

2 2 2 22

20

21( ) ( ) ( )g v g v gds c dt dx dv y dz

xv e

1 2g g

1 0g g

0 1g

2 0ds

2

20( 1)i ig v gv

c

7/40

Principle of Lorentz Invariance

Method Accuracy Experiment

Isotropy cavity Müller et al 2002

Velocity independence

cavity Braxmaier et al 2002

Time dilation2 beam spectroscopy

Grieser et al 1994

0 0 91 2 2 10g g

0 0 51 0 2 10g g

0 70 1 8 10g

Future: OPTIS / DLR and SUMO / NASA:MM and KT 3 orders improvement

8/40

OPTIS

OPTIS

• Michelson-Morley

• Kennedy-Thorndike

1

2

• Univ. grav. red-shift

1( )U x

2( )U x

to Sun

9/40

Universality of Free Fall

Action of point mass

Violation of EP: fundamental field

Acceleration of mass 1:

cosmological value

c d

mc g dx dx

,m m

gg i3 311 132 2

i 131 13

G mm ma G

m r r

i 0 0 0, ,m m

2g A g

g

10/40

Universality of Free Fall

Composition-dependent gravitational constant:

Eötvös coefficient:

gg 013 311 3

i i 01 3

ln1 with

mm mG

G m m

1 2 13 231 2 3

1 2 13 23

2 2a a G G

a a G G

13 23r r

11/40

Loránd Eötvös (1848 - 1919)

12/40

Universality of Free Fall

Method Accuracy Experiment

Pendula 10-3 Newton (1686)

Pendula 2 x 10-5 Bessel (1832)

Torsion balance 5 x 10-9 Eötvös, Pekar, Fekete (1922)

Torsion balance 10-11 Roll, Krotkov, Dicke (1964)

Torsion balance 10-12 Braginski, Panov (1972)

Torsion balance 10-12 Adelberger et al. (1994)

Earth-Moon motion 5 x 10-13 Williams et al. (1996)

future

Free fall in orbit 10-15 MICROSCOPE (2005)

Free fall in orbit 10-17 GG

Free fall in orbit 10-18 STEP

13/40

Universality of Gravitational Red Shift

Gravitational Red shift: Clocks at larger distances from gravitating objects go faster than nearby clocks.

Universality of Gravitational Red Shift:All kinds of clocks show the same behaviour.

Interpretation: Universality of coupling of gravity to all kinds of particles and fields; constancy of the basic coupling parameters.

002

( ) ( )( ) 1 ( )

U x U xx x

c

GM

Ur

14/40

Universality of Gravitational Red Shift

No universality (absolute measurement):

Comparison of two clocks (differential mmt.):

Zero in GR: Null test

cl0

02ock

( ) ( )( ) 1 ( )

U x U xx x

c

clock 2clock 1 clock 1

2clo

cck 2 clock

lo2

ck 1x

U

c

0x

x

15/40

Universality of Gravitational Red Shift

Atomic (hf) clock H-maser Cs atomic clock Ion clock Atomic fountain clock

Cavity clock

Molecule clock (rotation, vibration)

2 ( )E f

L

rot,vib rot,vib ,e

p

mE f

m

c

16/40

Universality of Gravitational Red Shift

ComparisonAccuracy

Experiment

Red Shift (H-maser) am (7 x 10-5)GP-A, Vessot et al 1980

(ACES: 2 ord. impr. pos.)

Mg – Cs (fine structure) dm 7 x 10-4 Godone et al 1995

Resonator – I2 (electronic) dm 4 x 10-2 Braxmaier et al 2002

Cs – H-Maser (hf) dm 2.1 x 10-5 Bauch et al 2002

2 1

17/40

The Consequence: General Relativity

Lorentz Invariance

Universality of Free Fall

Universality of Grav. Red Shift

Equations for the metric: Einstein field equations

Gravity is Geometry(Riemann Geometry)

g

4

1 8

2

GR Rg T

c

geometry matter

18/40

Predictions of General Relativity

1843: Perihelion shift (Mercury orbit)

1915: General Theory of Relativity

1919: Deflection of light (solar eclipse)

1960: Gravitational redshift (Mössbauer effect)

1967: Shapiro time delay (radar ranging to Mercury)

1974: Periastron shift (binary pulsar)

1978: Gravitational radiation damping (binary pulsar)

1987: Geodetic precession (Earth-Moon gyroscope)

1997: Lense-Thirring effect (LAGEOS satellites)

19/40

Predictions of General Relativity

Perihelion shift

Sun

20/40

Predictions of General Relativity

Deflection of light

Shapiro time delay

ApparentApparentpositionposition

TrueTruepositionposition

21/40

Predictions of General Relativity

Gravitomagnetism (Lense-Thirring effect)

J

22/40

Predictions of General Relativity

Binary pulsar

23/40

Predictions of General Relativity

Effect Method ReferencePerihelion shift Mercury orbital motion Shapiro (1990)

Periastron shift binary pulsar Taylor (1993)

Deflection of light VLBI Lebach et al (1995)

Shapiro time delay Viking radar ranging Reasenberg et al (1979)

Geodetic precession lunar laser ranging Williams et al (1996)

Lense-Thirring effect satellite ranging Ciufolini et al (1997)

Gravitational radiation damping

binary pulsar Taylor (1993)

0.9996 0.0017 0.9997 0.0005

accuracy for strong field effects: 0.03% evidence for gravitational waves

1/36

The Metric

2222

00 2 2 2

0 3 3

222

2 2

21 1 3cos 1 2

2

1

21 1 3cos 1

2

ii

ij ij

GM JR GMg

rc r rc

GJ rg

rc

GM JRg

rc r

NewtonNewton

quadrupole momentnon-linearity

NewtonNewton

quadrupole moment

rotation

24/40

Future Test: GP-B (NASA)

Scientific objectives

Test of frame dragging to 0.1% accuracy

Test of geodetic precession to 0.001% accuracy

Launch: 2003

25/40

Evidence for Black Holes

Black Hole horizon

26/40

Evidence for Black Holes

X-Ray Source Name Mass of Companion Mass of Black Hole

Cygnus X-1 24 – 42 11 – 21

V404 Cygni ~ 0.6 10 –15

GS 2000+25 ~ 0.7 6 – 14

H 1705-250 0.3 – 0.6 6.4 – 6.9

GRO J1655-40 2.34 7.02

A 0620-00 0.2- 0.7 5 – 10

GS 1124-T68 0.5 – 0.8 4.2 – 6.5

GRO J042+32 ~ 0.3 6 – 14

4U 1543-47 ~ 2.5 2.7 – 7.5

R. Blandford & N. Gehrels (1999)

Stellar Black Hole Candidates in the Milky Way

MMass in units of

27/40

Evidence for Black Holes

Name Mass Method

M87 2 x 109 stars + optical disc

NGC 3115 109 stars

NGC 4486 B 5 x 108 stars

NGC 4594 (Sombrero) 5 x 108 stars

NGC 3377 8 x 107 stars

NGC 3379 5 x 107 stars

NGC 4258 4 x 107 masing H2O disc

M 31 (Andromeda) 3 x 107 stars

M 32 3 x 106 stars

Galactic Centre 2.5 x 106 stars + (3-D motions)

Supermassive Black Hole Candidates

M.J. Rees (1997)MMass in units of

28/40

Detection of Gravitational Waves

Resonant bar detectors

• ALLEGRO (Louisiana/USA)

• AURIGA (Legnaro/Italy)

• NAUTILUS (Frascati/Italy)

• EXPLORER (CERN)

• NIOBE (Perth/Australia)

Laserinterferometric detectors

Earth-based

• LIGO (USA)

• VIRGO (France - Italy)

• GEO600 (Germany - UK)

• TAMA300 (Japan)

Space-borne

• LISA (ESA - NASA)

29/40

Detection of Gravitational Waves

h

l 2

hl l

proton

1000

rl

30/40

Detection of Gravitational Waves

31/40

Detection of Gravitational Waves

h

32/40

ESA-NASA mission: LISA

33/40

Cosmology

Friedmann-Lemaître Universes:

4

1 8

2

GR Rg g T

c

Cosmological Constant

2 2 2 2 2( )ds c dt R t d

34/40

Cosmology

Curvature

Hubble parameter

Deceleration parameter

2 0, 1K k R k

H R R 2q R RH

t

A A A ABBBB ( )R t( )R t( )R t( )R t

35/40

Cosmology

11

2M K Mq

M crit

2

2

3

K

H

K H

2crit

29 3

65 km/s Mpc

3 /8

10 g cm

H

H G

0p

36/40

Cosmology

.Present values

CMB and GRS

0.11 0.40

0.65 0.85

( 0.05) ( 0.04)

( 0.79) ( 0.45)

M

K

q

AcceleratingUniverse !

X. Wang et al (2001)

Efstathiou et al (2001)

37/40

Cosmology

. SN -Ia: 1.3 0.45M

Leibundgut (2001)

38/40

Beyond General Relativity

Unification of Gravity with Electro-Weak and Strong Interactions

Observation: General Relativity

is effective theory (low-energy limit):

: vacuum-expectation value of fundamental field at the present epoch

- term is of vacuum-energy type with pressure

4

1 8

2

GR Rg g T

c

0 0, G

0 0 0

2vacc

2vac vacp c

vac2

8 G

c

39/40

Beyond General Relativity

Unification-Ansatze: String and brane theories in

higher-dimensional spacetimes with non-trivial topologies

However, the effective cosmological constant is infinitesimal

by particle-physics standards

Quintessence scenarios (ad hoc)

4 32 2 46crit 10 GeVc c c

2 8c G

40/40

The Future: Summary and Outlook

M I S S I O N S and E X P E R I M E N T S

Special Relativity and Foundations of General Relativity:

SUMO, OPTIS, PHARAO/ACES, HYPER; MICROSCOPE, GG, STEP

General Relativity:

GP-B; Gravitational Wave Detectors; GAIA

Cosmology:

Planck (CMB), SNAP (SN-Ia), DEEP (Redshift)