Presentacion Deltares

Post on 04-Jul-2015

541 views 0 download

description

Feasibility study on ground motion monitoring with sun-synchronoussatellite Radar observations.

Transcript of Presentacion Deltares

30-Mar-10 1

Observing the Earth from the space.

A Satellite Radar Application

Álvaro MuñozSupervisor: Victor Hopman

30-Mar-10 2

Introduction

• Background

– Land reclamation

– Soft unconsolidated soil

– Expected subsidence

– Need for monitoring

30-Mar-10 3

Introduction

• Monitoring with Remote Sensing

– Sensors apart from objects

– Measurement--> Energy emitted/reflected

30-Mar-10 4

Introduction• Remote Sensing Techniques

• Source of Energy

• Active/Pasive

• Electromagnetic Spectrum

• Optical/Thermal/Microwave

• Platform

• Manned-Unmanned Plane/Helicopter

• Kites

• Satellite

Active+Microwave+Satellite

30-Mar-10 5

Remote Sensing with Satellite RADAR

• Radar Satellite Orbits

– Elliptical

– Near Polar

– Sun-Synchronous

– Height

• 500-1000 km

30-Mar-10 6

• Active Sensor

– Measurement: Backscattering

Remote Sensing with Satellite RADAR

30-Mar-10 7

• Polarization Dependent

– Example

• Horizontal+Vertical polarization

• Acquisition Geometry

– Azimuth (along track)

– Range (cross track)

Remote Sensing with Satellite RADAR

30-Mar-10 8

• Synthetic Aperture Radar (SAR)

Remote Sensing with Satellite RADAR

30-Mar-10 9

• Complex Waveform

– Parameter: Amplitude• Conventional SAR

• Complex Waveform

– Parameter: Phase• Interferometric SAR

(InSAR)

Remote Sensing with Satellite RADAR

30-Mar-10 10

• Interferometric SAR

Remote Sensing with Satellite RADAR

30-Mar-10 11

• Interferometric SAR

– Major limitation

• Temporal decorrelation

Remote Sensing with Satellite RADAR

30-Mar-10 12

• Persistent Scatterer InSAR (PSInSAR)

Remote Sensing with Satellite RADAR

30-Mar-10 13

• Persistent Scatterer InSAR (PSInSAR)

Remote Sensing with Satellite RADAR

30-Mar-10 14

PSInSAR. Past Case Studies

• Deformation near the Wieliczka Salt Mine in Poland

30-Mar-10 15

Salt Mine in Poland

• Subject and Motivations of the Study

30-Mar-10 16

Salt Mine in Poland

• Available Data

• 51 images ERS-1/2 (ESA)

• 1992 to 2000

•Repeat cycle 34 days

• Single orbit direction

30-Mar-10 17

Salt Mine in Poland• Experimental Results

– PS density

• Maximum=480 PS/km2 (center of Wieliczka)

• Minimum=30 PS/km2 (sparse urbanization areas)

• Average=92 PS/km2

– Comparison with subsidence maps � Agreement

• Leveling data 1970-2000

• PSInSAR data 1992-2000

– Field investigation

• Interpretation of Observations

30-Mar-10 18

Salt Mine in Poland

• Experimental Results

30-Mar-10 19

Salt Mine in Poland

• Conclusions

– Slow subsidence detected by PSInSAR

– Proof of utility of SAR archive

– Agreement leveling data

– More PS density --> Urban areas

– PS on landslide area

• Variability

• Horizontal displacement � limitation of PSInSAR

– Field inspection

• Confirmation of PSInSAR observations

• Hope for risk assessment

30-Mar-10 20

PSInSAR. Recent Case Studies

• PSInSAR Analysis of damages during construction of parking near Koepoortbrug (Delft)

• Filter optimization for PSInSAR analysis

– Houtribdijk

• Monitoring Spoorzone Delft with PSInSAR

30-Mar-10 21

• Subject and Motivations of the Study

Koepoortbrug

30-Mar-10 22

• Available Data

Koepoortbrug

• Envisat (ESA)

• 2003 to 2006

•Every 35 days

• Single orbit direction

30-Mar-10 23

• Experimental Results

Koepoortbrug

• Background: Amplitude SAR

• Overlaid: PS area of interest

30-Mar-10 24

• Conclusions

– Historic data → normal behavior

– Envisat data not suitable. Reasons:

– Very sudden deformations

– Undersampling (35 day repetition rate)

– Possible change of orientation

• Temporal decorrelation

– Repair works

• Solution

– Another data set�

• Higher repetition rate

• Shorter wavelength (improve detectability)

Koepoortbrug

30-Mar-10 25

PSInSAR. Recent Case Studies

• PSInSAR analysis of damages during construction of parking near Koepoortbrug (Delft)

• Filter optimization for PSInSAR analysis

– Houtribdijk

• Monitoring Spoorzone Delft with PSInSAR

30-Mar-10 26

Houtribdijk

• Subject and Motivations of the Study

30-Mar-10 27

• Available Data

Houtribdijk

• Envisat (ESA)

• 2003 to 2007

•Every 35 days

• Single orbit direction

30-Mar-10 28

Houtribdijk

• Experimental Results

30-Mar-10 29

Houtribdijk

• Conclusions

– Denoise filtering smooths time series

– Optimization: Triangular filter. Length 10-12 months

– Similar Performance: Gaussian filter > 12 months

30-Mar-10 30

PSInSAR. Recent Case Studies

• PSInSAR analysis of damages during construction of parking near Koepoortbrug (Delft)

• Filter optimization for PSInSAR analysis

– Houtribdijk

• Monitoring Spoorzone Delft

30-Mar-10 31

• Subject and Motivations of the Study

Spoorzone Delft

30-Mar-10 32

• Available Data

Spoorzone Delft

38--- 40.5° 22.5--- 25.5°38--- 40.5° 22.5--- 25.5°38--- 40.5°38--- 40.5° 22.5--- 25.5°

30-Mar-10 33

• Experimental Results

Spoorzone Delft

30-Mar-10 34

Spoorzone Delft

• Experimental Results

IKEA parking:

• Soil subsidence

30-Mar-10 35

• Experimental Results

– Correction of Geolocation (Reference: AHN&AHN2)

• Vertical offset (estimated height)

Spoorzone Delft

30-Mar-10 36

• Experimental Results

– Correction of Geolocation (Reference: AHN&AHN2)

• Horizontal offset (estimated azimuth and range)

Spoorzone Delft

30-Mar-10 37

• Experimental Results

– Correction of Geolocation (Reference: AHN&AHN2)

• Cross Sections

Spoorzone Delft

30-Mar-10 38

• Experimental Results

– Combination of Ascending/Descending Orbits

Spoorzone Delft

30-Mar-10 39

• Experimental Results

– Combination of Ascending/Descending Orbits

Spoorzone Delft

ASCENDING ORBIT

DESCENDING ORBIT

30-Mar-10 40

• Experimental Results

– Thermal Expansion

Spoorzone Delft

Power of the technique:

• Detect thermal expansion in high buildings

Correlation:

• PSInSAR�thermal theory

30-Mar-10 41

Spoorzone Delft

• Experimental Results

– Thermal Expansion

Vermeer Toren:

• 7,3mm vertical deformation

• (Thermal expansion)

30-Mar-10 42

• Experimental Results

– Detectable Deformation

Spoorzone Delft

Side tilt1 mm

Subsidence1.09 mm

Front tilt7.7 mm

Side tilt1 mm

Subsidence1.09 mm

Front tilt7.7 mm

Side tilt1 mm

Subsidence1.09 mm

Front tilt7.7 mm

Side tilt1 mm

Subsidence1.09 mm

Front tilt7.7 mm

Side tilt1 mm

Subsidence1.09 mm

Front tilt7.7 mm

30-Mar-10 43

Conclusions

• Power – Historic archive (past/future)

– Large coverage

– Cost

– Processing improvements

• Interpretation of observations not straightforward

• PS → physical entities?

PSInSAR can provide mm accuracy in detection of deformation

Monitoring Structures → Damage prevention