Particle Dynamics and Multi- Channel Feature Dictionaries for Robust Visual Tracking Srikrishna...

Post on 04-Jan-2016

224 views 3 download

Tags:

Transcript of Particle Dynamics and Multi- Channel Feature Dictionaries for Robust Visual Tracking Srikrishna...

Particle Dynamics and Multi-Channel Feature Dictionaries for Robust Visual Tracking

Srikrishna Karanam, Yang Li, Rich Radke Dept. of Electrical, Computer, and Systems Engineering, Rensselaer Polytechnic Institute, Troy NY

2

Compressive sensing tracking

Feature dictiona

ry๐ด=[๐‘ก1๐‘ก 2โ‹ฏ ๐‘ก๐‘›]

X. Mei and H. Ling, Robust visual tracking using minimization, ICCV 2009.

3

Compressive sensing tracking

Current

state

๐‘ ๐‘ก+1=๐‘ ๐‘ก+๐’ฉ (0,1 )๐‘ข0๐‘ข0=๐‘‘๐‘–๐‘Ž๐‘”(๐œŽ0)๐‘ (๐‘ ๐‘ก+1โˆจ๐‘ ๐‘ก)

Hypotheses

X. Mei and H. Ling, Robust visual tracking using minimization, ICCV 2009.

4

Compressive sensing tracking

Hypothesis Testing

โ‹ฏ

๐‘ฆ=๐ด๐‘ฅ+๐‘’ Sparse x, e

X. Mei and H. Ling, Robust visual tracking using minimization, ICCV 2009.

Contributions

APPEARANCE MODELโ€ข Multi-channel feature

dictionariesโ€ข Image intensityโ€ข Image gradient

magnitudeโ€ข Histograms of

Oriented Gradients

HYPOTHESIS GENERATIONโ€ข Particle filterโ€ข Adaptive variance

Gaussian State Transition Model

HYPOTHESIS TESTINGโ€ข minimizationโ€ข Probabilistic reasoningโ€ข Adaptive filteringโ€ข Dictionary update

5

6

Appearance model Intensity

Normalized gradient magnitude

Histograms of Oriented Gradients

โ‹ฏ

โ‹ฏ

โ‹ฏ

Norm.Gradient

HOG

โˆ‘

(โˆถ)Intensity

โˆ‘

(โˆถ)

โˆ‘

(โˆถ)

J. Wright and Y. Ma, Dense error correction via minimization, IEEE Trans. on Info. Theory, 2009

7

Hypothesis generation โ€“ Transition model

โ€ข Contribution โ€“ Dynamic state transition model

โ€ข - state with highest observation probability

โ€ข - estimated using past states

โ‹ฎ

Past statevectors

๏ฟฝฬ‚๏ฟฝ (๐’•)

๐’† (๐’•)

๐’” (๐’•โˆ’๐’)

๐’” (๐’•โˆ’๐’+๐Ÿ)

๐’” (๐’•โˆ’๐Ÿ)๐ˆ๐’•+๐Ÿ

X. Mei and H. Ling, Robust visual tracking using minimization, ICCV 2009.C. Bao et al., Real-time robust tracker using accelerated proximal gradient approach, CVPR 2012.Z. Hong et al., Tracking via robust multi-task multi-view joint sparse representation, ICCV 2013.

8

Hypothesis generation โ€“ Transition modelโ€ข Contribution โ€“ Dynamic

state transition model

โ€ข - state with highest observation probability

โ€ข - estimated using dynamics of past states

โ€ข to be computedโ€ข Hankel matrixโ€ข Least squares minimization

๐‘ ๐‘ก+1=๐‘ ๐‘ก+๐’ฉ (0,1 )๐œŽ๐’•+๐Ÿ

๐œŽ ๐‘ก+1=max (min (๐œŽ0โˆš๐‘’๐‘ก ,๐œŽ๐‘š๐‘Ž๐‘ฅ ) ,๐œŽ๐‘š๐‘–๐‘›)

๐‘’๐‘ก=โˆ‘๐‘—=1

3

๐‘’๐‘ก๐‘—๐‘’๐‘ก

๐‘—=โˆฅ ๐‘ฆ~๐‘ ๐‘ก๐‘— โˆ’ ๐‘ฆ ๐‘ ๐‘ก

๐‘— โˆฅ2

๐‘ ๐‘ก=๐‘1๐‘ ๐‘กโˆ’1+๐‘2๐‘ ๐‘กโˆ’ 2+โ‹ฏ+๐‘๐‘›๐‘ ๐‘กโˆ’๐‘›

๐ป ๐‘ ๐‘ก โˆ’๐‘›โˆ’1 ,๐‘›๐‘๐‘‡= [๐‘ ๐‘›+1๐‘ ๐‘›+2โ‹ฏ๐‘ ๐‘›+ (๐‘กโˆ’๐‘›โˆ’1 ) ]๐‘‡

M. Ayazoglu et al., Dynamic subspace-based coordinated multicamera tracking, ICCV 2011.

(1)

(2)

(3)

(4)

(5)

(6)

9

Hypothesis generation โ€“ Particle filtering

๐‘›=๐œ’ ๐‘˜โˆ’ 1,1โˆ’๐›ฟ2

2๐œ–

โ€ข Related approaches โ€“ (400-600, fixed)โ€ข Dynamic model + adaptive candidate

filtering

D. Fox, KLD-Sampling: Adaptive Particle Filters, NIPS 2001.

10

Hypothesis testing min๐‘ฅ ,๐‘’

โˆฅ ๐‘ฅโˆฅ1+โˆฅ๐‘’ โˆฅ1๐‘  . ๐‘ก . ๐‘ฆ=๐ด๐‘ฅ+๐‘’

min๐‘ฅ ,๐‘’

๐ฟ (๐‘ฅ ,๐‘’ ,๐‘ )

๐‘ฅ๐‘–+1=argmin๐‘ฅ๐ฟ(๐‘ฅ ,๐‘’๐‘– ,๐‘๐‘–)

๐‘’๐‘–+ 1=argmin๐‘’๐ฟ(๐‘ฅ ๐‘–+1 ,๐‘’ ,๐‘๐‘–)

๐‘๐‘–+1=๐‘๐‘–+๐‘˜(๐‘ฆโˆ’๐ด๐‘ฅ ๐‘–+ 1โˆ’๐‘’๐‘–+1)

FISTA

Analytic

Hypothesis โ€ข Intensity

โ€ข Norm. gradient โ€ข HOG

min in each channel

Highest observation probability

๐‘ (๐‘ฆ๐‘ก|๐‘ ๐‘ก )=exp (โˆ’โˆ‘๐‘—=1

3

๐›ผ ๐‘—โˆฅ ๐ด๐‘—๐‘ฅ ๐‘—โˆ’ ๐‘ฆ๐‘ก

๐‘—โˆฅ22)

๐‘ฆ ๐‘—

๐‘ฅ ๐‘— ,๐‘’ ๐‘—

โ‹ฏ

11

Data

โ€ข Publicly available standard test sequences

Focal Length

Y. Wu et al., Online object tracking: a benchmark, CVPR 2013.

12

Evaluation metrics

โ€ข Success plot

โ€ข Robustness testsโ€ข Temporal robustness test

โ€ข Spatial Robustness test

Principal Point Focal Length

โ€ข Overlap precision vs. Overlap threshold

13

Experimental Results โ€“ Overall Success Plot

โ€ข Ideally, close to 1

Principal Point Focal Length

14

Experimental Results โ€“ Robustness tests

โ€ข Temporal robustness evaluation

โ€ข Spatial robustness evaluation

Principal Point Focal Length

15

Experimental Results

โ€ข Validating key components.

โ€ข Choice of features.

โ€ข Choice of transition model.

โ€ข Adaptive candidate filtering

Principal Point Focal Length

Distortion Coefficient

16

SpeedMethod Speed

(fps)Template size

Average

distance

precision

Average AUC

Ours* 2.5 64 x 64 0.92 0.69

L1* 8.2 12 x 15 0.47 0.36

MTT* 0.4 32 x 32 0.60 0.42

ONDL* 0.5 32 x 32 0.79 0.59

SCM* 0.05 32 x 32 0.72 0.59

ASLA* 0.7 32 x 32 0.73 0.59

LSH 7 - 0.70 0.57

LOT 0.2 - 0.53 0.31

SPT 0.1 - 0.49 0.29

MIL 8.5 - 0.56 0.45

IVT 6.5 - 0.61 0.46

* - based on sparse visual representation.

This material is based upon work supported by the U.S. Department of Homeland Security, Science and Technology Directorate, Office of University Programs, under Award 2013-ST-061-ED0001. The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the U.S. Department of Homeland Security.

Conclusionsโ€ข Multi-Channel featuresโ€ข Particle dynamical informationโ€ข Adaptive filtering

Thank you! Questions?