Optical near-field control of nanoresonators benoit.cluzel@u-bourgogne.fr Near Field Optics Group...

Post on 28-Mar-2015

221 views 0 download

Tags:

Transcript of Optical near-field control of nanoresonators benoit.cluzel@u-bourgogne.fr Near Field Optics Group...

Optical near-field control of nanoresonators

benoit.cluzel@u-bourgogne.fr

Near Field Optics GroupOMR ICB - Université de Bourgogne

Benoit Cluzel, Loïc Lalouat, Frédérique de Fornel

Philippe Velha, Emmanuel Picard, Thomas Charvolin, Emmanuel Hadji

Philippe Lalanne

David Peyrade

Collaborations

benoit.cluzel@u-bourgogne.fr

Nicolas Louvion, Christian Seassal, Ségolène Callard

ACI NR63 « CHABIP »

Introduction

Optical resonators

Light confinement inside a volume V with an efficiency Q

benoit.cluzel@u-bourgogne.fr

For single photon sources, ultra low treshold lasers, enhanced light matter-interactions.

Figure of merits : Q/V

h

Introduction

Near-Field control of optical resonators

- to probe the electromagnetic field confinement

- to manipulate mechanically the confinement ?

benoit.cluzel@u-bourgogne.fr

Introduction

at the nanometer scale…

benoit.cluzel@u-bourgogne.fr

Outline

1/ Resonators of nanophotonics

2/ Optical near-field microscopy

3/ Near-Field Probing of light confinement

4/ Near-Field Manipulation of light confinement

benoit.cluzel@u-bourgogne.fr

1/ Resonators of Nanophotonics

benoit.cluzel@u-bourgogne.fr

Kippenberg et al, Nature 421 (2003) Akahane et al, Nature 425 (2003)

Refraction Diffraction

Photonic crystal resonators

Spherical/Toroïdal resonators

Light confinement with ultra- high Q

Q~106-108 V~50µm3

Light confinement in ultra- small V

Q~104-106

V~0.1µm3

50µm 1µm

benoit.cluzel@u-bourgogne.fr

2/ Optical near-field imaging of nanoresonators

Near-field probe

Exponential decay of the fieldDecay length ~100nm

OPTICAL NEAR FIELD

Evanescent wave collection & mapping+

Topographical pictures

Optical Microscopy :Propagative waves imaging : Resolution > /2 (Rayleigh limit)

Near-field Microscopy :Evanescent waves imaging : Sub- wavelength resolution

n1

n2

n1

benoit.cluzel@u-bourgogne.fr

InGaAs QWs

Optical pumping=780nm

PL =1550nm

Si

SiO2

InP

3/ Near-field probing of light confinement

Experimental approach:

benoit.cluzel@u-bourgogne.fr

1300 1400 1500 1600 17000,00

0,01

0,02

0,03

PL

in

ten

sit

y (

a.u

.)

Wavelength (nm)

4µm

4µm

4µm

1µm

1µm

Resolution ~ /10 < Rayleigh limit

3/ Near-field probing of light confinement

Experimental results:

benoit.cluzel@u-bourgogne.fr

3/ Toward a Near-field control of confined light

What about the effect of the near-field probes ???

benoit.cluzel@u-bourgogne.fr

3/ Toward a Near-field control of confined light

General assumptions: 1- Since the probe volume remains largely lower than the cavity volume

2- The losses introduced by the presence of the probe are lower than the cavity losses

The probe is not a perturbative element of the system

But What happens if ????

benoit.cluzel@u-bourgogne.fr

Let consider a state of the art nanocavity with:

An ultra low-volume : V=(/n)3

A high Q-factor: Q~104-105

1µm

3/ Toward a Near-field control of the confined light

benoit.cluzel@u-bourgogne.fr

3/ Toward a Near-field control of the confined light

«  pump – probe » experiments with a near-field tip

benoit.cluzel@u-bourgogne.fr

Light in

IT()

Tip up

z >100nm

~100nmSiO2

z =4nmNear-FieldInteraction

Tip down

1560,5 1561,0 1561,50

1

2

I T(z

) (

V)

Wavelength (nm)

3/ Basics of Optical Near-Field interactions

The probe acts as an optical path length modulator

Q=12000

1560,5 1561,0 1561,50

1

2

I T(z

) (

V)

Wavelength (nm)

Q=11000

Losses introduced by the probe << Cavity Losses

benoit.cluzel@u-bourgogne.fr

3/ Basics of Optical Near-Field interactions

Evanescent interaction between probe and cavity

3/ Optical Near-Field interactions mapping

1560,5 1561,0 1561,5

1

I T(z

) (

V)

Wavelength (nm)

downup

benoit.cluzel@u-bourgogne.fr

600nm

Interaction map @ up

600nm

Interaction map @ down

2E

Dielectric pertubation of the Electric field

benoit.cluzel@u-bourgogne.fr

3/ Optical Near-Field interactions control

Near-Field Switch

Time scale for switching limited by mechanical

resonance

=>could excess the MHz range with the integration of

cantilevers

Conclusion

benoit.cluzel@u-bourgogne.fr

From Passive to Active Near Field Optics

Sub- probing of the light

confinement in nanoresonators

Sub- manipulation of the light confinement

in nanoresonators

4µm

Publications:Gérard et al, Opt. Lett. 27, 2002Cluzel et al, App. Phys. Lett. 85, 2004Louvion et al, Phys Rev. Lett. 94 2005Cluzel et al, J. App Phys. 98, 2005 Cluzel et al, App. Phys. Lett. 88, 2006

A post-doctoral position available now!

In the Near-Field Optics Group (Université de Bourgogne, France)

Contact: benoit.cluzel@u-bourgogne.fr ffornel@u-bourgogne.fr