One-dimensional Flow 3.1 Introduction In real vehicle geometry, The flow will be axisymmetric Normal...

Post on 14-Dec-2015

222 views 1 download

Tags:

Transcript of One-dimensional Flow 3.1 Introduction In real vehicle geometry, The flow will be axisymmetric Normal...

One-dimensional FlowOne-dimensional Flow

3.1 Introduction3.1 Introduction

In real vehicle geometry, The flow will be axisymmetric

12

12

12

12

uu

TT

PP

12 M

1

1

1

1

u

T

P

11 M

Normal shock

One dimensional flow

The variation of area A=A(x) is gradual

Neglect the Y and Z flow variation

3.2 Steady One-dimensional flow equation3.2 Steady One-dimensional flow equation

Assume that the dissipation occurs at the shock and the flow up stream and downstream of the shock are uniform

Translational rotational and vibrational equilibrium

The continuity equation

dt

sdus

. 0. sdu

s

L.H.S of C.V

02211 AuAu 2211 uu

The momentum equation

svvs

spddvfdt

uusdu

)(

).(

ss

spdusdu

).( 2222

2111 uPuP

(Continuity eqn for steady 1-D flow)

Remember the physics of momentum eq is the time

rate of change of momentum of a body equals to the

net force acting on it.

2

222

2

111

122211 )(

uPuP

APAPuAuuAu

sduu

edu

et

dvufsdupdqsvvv s

.)2

()2

().(.22

The energy equationThe energy equation

Auu

eAuu

eAupAupQ 2

2

2221

2

1112211 )

2()

2()(

2 21 2

1 22 2

u uq h h

Au

Qq

11

Physical principle of the energy equation is the energy is the energy is conserved

Auu

eAupAuu

eAupQ 2

2

222221

2

11111 )

2()

2(

Energy added to the C.V Energy taken away from the system to the surrounding

3.3 Speed of sound and Mach number3.3 Speed of sound and Mach number

Wave front called “ Mach Wave”

Mach angle μ

Mv

a

vt

at 1sin

M

1sin 1

Always stays inside the family of circular sound waves

Always stays outside the family of circular sound waves

Wave front

A sound wave, by definition,

ie: weak wave

( Implies that the irreversible,

dissipative conduction are negligible)

Continuity equation

daddaadadaada ))((

d

daa

1 2

T

p

a

dTT

d

dpp

daa

Momentum equation

22 ))(( daaddppap

dadaadp 22

a

dadpda

2

2

dadadp

a2

2

a

a

d

dp

a 22

1 2

ddp

a 2

No heat addition + reversible

s

pa )(2

ss

vv

p

2

ss

pa

)(General equation valid for all gas

d

daa

Isentropic compressibility

For a calorically prefect gas, the isentropic relation becomes

cp

1 cp

ppc

p r

s

11 .

RTp

a

For prefect gas, not valid for chemically resting gases or real gases

Ideal gas equation of state RTP

Taa

Form kinetic theory

8RTC

88

1.35

RTC

a RT

Ca4

3

a for air at standard sea level = 340.9 m/s = 1117 ft/s

Mach Number a

VM

1

1

1

M

M

M Subsonic flow

Sonic flow

supersonic flow

The physical meaning of M

2 2 2 2

2 22

2

2 2 2 22 2 2 21 1 1 ( 1)( )1 1

v

V V V VV V

MRa RT RT C T eT

2MKinetic energy

Internal energy

3.4 Some conveniently defined parameters 3.4 Some conveniently defined parameters

Inagine: Take this fluid element and Adiabatically slow it own (if M>1) or speed it up (if M<1) until its Mach number at A is 1.

***** ,, aV

MrRTaT

A

P

T

M

For a given M and T at the some point A

Its values of and at the same point

*T *a

associated with

Note: are sensitive to the reference coordinate system are not sensitive to the reference coordinate

00.T

.T

In the same sprint, image to slow down the fluid elements isentropically to zero velocity ,

total temperature or stagnation temperature

total pressure or stagnation pressure

0T

0P

Stagnation speed of sound

Total density

00 RTa

000 / RTP

(Static temperature and pressure)

3.5 Alternative Forms of the 1-D energy equation 3.5 Alternative Forms of the 1-D energy equation

= 0(adiabatic Flow)

22

22

2

21

1

uh

uh

22

22

21

21

2121

u

r

au

r

a

2)(

12)(

1

22

2

22

1

1

1 uP

r

ruP

r

r

2*

22

)1(2

1

21a

ua

Q

A

B

Aa*

Aa

Ba*

Ba

If the actual flow field is nonadiabatic form A to B →

Many practical aerodynamic flows are reasonably adiabatic

calorically

prefect

**

BA aa

Total conditions - isentropic

20

2

11 M

r

T

T

120 )2

11( r

r

Mp

P 1

120 )

2

11( rM

CpTu

CpT 2

2

Ma

u

RT

u

T

T 2

2

220

2

11

1

21

1

21

Adiabatic flow

1000

r

r

T

T

P

P

isentropic

Note the flowfiled is not necessary to be isentropic

If not →

If isentropic → are constant values

BABABA PPTT 000000 ,,

000 ,, PT

121

20

22

r

au

r

a

1

2)(

0

*2

0

*

rT

T

a

a1

1

12

0

*

)( r

r 1

0

*

1

2

r

r

rP

P

1)1(2

1 2

0*2

r

aa

r

r

4.1r

634.0

528.0

833.0

0

*

0

*

0

*

P

P

T

T

)1(/1

22

2

*

rMrM

= 1 if M=1

< 1 if M < 1

> 1 if M > 1

*M*M

*M

or 2

2*

)1(2

)1(2

M

MM

2*

22

12

1

21a

r

ru

r

a

2*2

12

1

2

1

1

/

u

a

r

r

r

ua

12

1/1

2

11

12

1

1

1 2*2

*

2

r

rMr

Mr

r

rM

1

1*

r

rM If M → ∞

EX. 32

3.6 Normal shock relations 3.6 Normal shock relations

The shock is a very thin region ,

Shock thickness ~ 0 (a few molecular mean free paths)

~ cm for standard condition)510

1

Known

adiabatic

2

To be solved

2211 uu

2222

2111 upup

22

22

2

21

1

uh

uh

Continuity

Momentum

Energy

( A discontinuity across which the flow properties suddenly change)

22222 , TChRTP p

Ideal gas E.O.S

Calorically perfect

Variable :

22222 ,,,, Thpu 5 equations

21*2

uua *

1

*2

1

MM

Prandtl relation

Note:

1111 2*

2*

11 MMMM

1.Mach number behind the normal shock is always subsonic

2.This is a general result , not just limited to a calorically perfect

gas

2/)1(

]2/)1[(12

1

212

2

rrM

MrM

Special case 1. 2.

11 M 12 M

1Mr

rM

2

12

2

2*

12

12

Mr

MM

2*1

*2

12

MM

21

212*

12*

21

21

21

2

1

1

2

)1(2

)1(

Mr

MrM

a

u

uu

u

u

u

Infinitely weak normal shock . ie: sound wave or a Mach wave

21

21

2

1

1

2

)1(2

)1(

Mr

Mr

u

u

])1(

)1(2)][1(

1

21[))(( 2

1

212

11

2

2

1

1

2

1

2

Mr

MrM

r

r

h

h

p

p

T

T

)1(1

21 2

11

2

Mr

r

P

P

1

22

112111

2

22

2

1112 1u

uuuuuuuPP

2

1

2

1

1

2

11

1

2

1

1211

Mr

Mr

p

u

P

P

Note : for a calorically perfect gas , with γ=constant

1

2

1

2

1

22 ,,,

T

T

P

PM

are functions of only1M

5

5

1

1

M

MReal gas effects

378.02

1lim 2

1

r

rM

M

61

1lim

1

2

1

r

rM

1

2

1

limP

PM

1

2

1

limT

TM

The 2nd law of thermodynamics 012 ss

1

2

1

212 lnln

P

PR

T

TCpss

1

1

1

1

1

1

M

M

M

0

0

0

12

12

12

SS

SS

SS

Why dose entropy increase across a shock wave ?

1u

2u1

2

)10~10(0 76 mm

y

u

Mathematically eqns of hold for 2

1

2

1

2

1

2 ,,, MT

T

p

p

1,1 11 MM

Physically , only is possible 11 M

Large ( small)y

Dissapation can not be neglected

entropy

1

212 ln

Po

PoRss Rsse

Po

Po /)(

1

2 12

22

22

2

21

1

uCpT

uCpT

a

a

a

aaa P

PR

T

TCpss

1

2

1

212 lnln

1

212 ln1ln

o

o

P

PRCpss

0201 CpTCpT

Note: 1 2.onlyMfP

P)( 1

01

02 12 ss 0102 PP

Ex.3.4 Ex.3.5 Ex 3.6 Ex 3.7

0201 TT To is constant across a stationary normal shock wave

To ≠ const for a moving shock

The total pressure decreases across a shock wave

3.7 Hugoniot Equation 3.7 Hugoniot Equation

)(2

112

uu 21

2

122

2222

2111 )( uPuPuP

1

2

12

1221

PP

u

2

1

12

1222

PP

u

22

22

2

21

1

uh

uh

Peh

2121

21

2112 2

1)

11)((

2

1vvppPPee

Hugoniot equation

It relates only thermodynamic quantities across the shock

General relation holds for a perfect gas , chemically reacting gas, real gas

vpe av

pv

e

p

efc

s

.. Acoustic limit is isentropic flow

1st law of thermodynamic with 0q

2

1

2

1

1

2

)1

1(

1)1

1(

v

v

r

rv

v

r

r

P

P

In equilibrium thermodynamics , any state variable can be expressed as a function of any other two state variable

For a calorically prefect gas

2221,12 , vfpvvPfP

Hugoniot curve the locue of all possible p-v condition behind normal shocks of various strength for a given 11,vP

vpee ,

pvvvpp

vpvpvpvpvpeh

pveh

1212

11221122

2

1

vp

h

sp

hfc

.v

p

h

udpdsdh

s

For a specific 1u

21

12

12

1

2

12

1221 v

vv

PPPPu

2

1

1

12

12

v

u

vv

PP

v

PStraight line

21

21 u Note 0

v

P

Rayleigh line

22. av

pfc

s

∵supersonic ∴ au 1

222

11 av

pu

v

p

s

sv

p

v

p

Isentropic line down below of Rayleigh line

In acoustic limit (Δs=0) u1→a insentrop & Hugoniot have the same slope

as function (weak) shock strength for general flow s

Shock Hugoniot

)(2

112

12

12 vvpp

hh

p

h

),( spvv

.....!3

1

2

1

2

1 3

3

32

2

2

11 pp

pp

pp

vvsss

For fluids

.......2

1 2

2

2

12

pp

hp

p

hhhh

ss

sphh ,

Coefficient

vdpdhdp

dhTds

vp

h

s

1 T

l

h

p

43

2

2

1 06

1

4

1

2

1pp

pp

sTs

For gibbs relation

ssp

v

p

h

2

2

ssp

v

p

h

2

2

3

3

...6

1

2

11

3

2

22

1

sTpp

vp

p

vpvh

s

pss

vp

p

vp

p

vpv

pss

2

1

4

1

2

1 3

2

22

1

u

p

s=const

02

2

sp

v

u

p 02

2

sp

v

3

2

2

12

1p

psT

h

0s 0p 02

2

sp

v

0s 0p 02

2

sp

v

For every fluid

“Normal fluid “

“Compression” shock

“Expansion “shock

Let 0

0

s

p

s=const

if

if

3.8 1-D Flow with heat addition3.8 1-D Flow with heat addition

e.q 1. friction and thermal conduction

2. combustion (Fuel + air) turbojet

ramjet engine burners.

3. laser-heated wind tunnel

4. gasdynamic and chemical

leaser

Assume calorically perfect gas

2211 uu

22

22

2

21

1

uhq

uh

2222

2111 uPup

0102

2

11

2

22 22

TTCu

TCu

TCq ppp

+E.O.S

1

1

1

1

ρ

p

u

T 2

2

2

2

ρ

p

u

T

q

A

TCh P

The effect of heat addition is to directly change the total temperature of the flow

Heat addition To

Heat extraction To

22

21

1

2

1

1

rM

rM

P

P

222

211

222

21112

MPMP

uuPP

22222 PMM

PMau

22

1

221

1

2 1 MP

PM

P

P

2

1

222

2

2

1

1

2 )()1

1(

M

M

rM

rM

T

T

2

2

12

1

2

2

1

2 ))(1

1(

M

M

rM

rM

2

1

1

2

1

2

1

2

1

2

1

2

2

1

1

2

1

2

T

T

M

M

P

P

u

u

P

P

P

P

T

T

2

1

1

2

1

2

1

2

1

2

1

2

T

T

M

M

a

a

M

M

u

u

1

22

2

2

1

1

2

1

22

1

1

2 )1

1(

M

M

rM

rM

M

M

P

P

T

T

))(1

1)(())((

2

12

1

2

2

2

1

2

1

2

1

2

1

1

2

M

M

rM

rM

M

M

a

a

M

M

u

u

2

2

2

1

1

2

1

2

2

01 1

1

21

1

21

102

rM

rM

Mr

Mr

P

Pr

r

2

22

2

1

2

2

22

21

01

02

21

1

21

1

1

1

Mr

Mr

M

M

rM

rM

T

T

1

2

1

212 lnln

P

PR

T

TCsss p

011201

120202

P

P

P

P

P

P

P

P 1

)2

11( 20

r

r

Mr

P

P

))()((01

1

1

2

2

02

01

02

T

T

T

T

T

T

T

T 20

2

11 M

r

T

T

Given: all condition in 1 and q

02T

2M

....,,1

2

1

2

1

2

T

T

P

P

)( 0102 TTCq p

To facilitate the tabulation of these expression , let state 1 be a reference state at which Mach number 1 occurs.

01

02

T

T

*1 PP *

1 TT *1 *

001 PP *001 TT

11 M MM 2

2* 1

1

MP

P

2

22

* 1

1

M

MT

T

1

11 2

2*

M

M

12

2*0

0

1

12

1

1

r

r

M

MP

P

2

22

2

*0

0 121

1M

M

M

T

T

*** lnln

P

PR

T

TCss p

Table A.3.

For γ=1.4

Adding heat to asupersonic flow M ↓

1*

1*

2

*002

*2

*001

*1

01021

)(

)(

)(

qqq

TTCq

TTCq

TTCq

P

P

P

To gain a better concept of the effect of heat addition on M→TS diagram

*** lnln

P

PR

T

TCss p

2*2*

2*

11

1

1

1

1M

P

PM

P

P

MP

P

**

2

2

*

2

2

2*

1

1

1

T

T

MP

pM

P

PM

MT

T

** T

TM

P

P

11 *

*

P

P

P

P

2

41

2

1 *

2

*

TT

P

P

2

)(411ln

1ln

*2

*

*T

T

T

T

C

ss

p

1

rR

Cp

Cpr

R

1

*

*2

*1))(1(

1)(

T

T

P

P

P

P

0))(1()(**

2*

T

T

P

P

P

P

1))(1()(

*2

** P

P

P

P

T

T

*T

T

Cp

SS *

1.0

B

A

At point A

0dT

ds0ds

2

0

ap

ds

0 ududp

0u

dud

ddp

u 2

∴ At point A , M=1

Rayleigl line

Momentum eq.

Continuity eq.

duududpuddu 2

At point B *T

Tis maximum

22

2*

)1

1(

rM

rM

T

T

r

r

T

T

4

)1(

)11

1(

1

2

2

max*

0*

dMTT

d

rM

12

1

BM

4.1

A (M=1)

01

212111242

222222

rM

rMrMrMrMrM

021 22 rMrM

MB subsonic

*T

T

Cp

SS *

B(M<1)

M<1

Heating

cooling

heating

M>1

jump

cooling

lower m

ds=(dq/T)rev

→addition of heat ds>0

1 2

q

Supersonic flowSupersonic flow

MM11>1>1

subsonic flowsubsonic flow

MM11<1<1

MM (M(M22<M<M11)) (M(M22>M>M11))

PP (P(P22>P>P11))

TT (T(T22>T>T11))

TT00 (T(T0202>T>T0101))

PP00 (P(P0202<P<P0101))

uu (U(U22<U<U11))

2

1

1

M

2

1

1

M

])1(2[)1(

)1(

]1

)1(2[

1

1

)1

1(

1

)1

1(

1

1

222

2

*0

0

12

2*0

0

2

2*

22

2*

2*

MM

M

T

T

M

MP

P

M

M

MM

T

T

MP

P

For supersonic flow Heat addition → move close to A M → 1

→ for a certain value of q , M=1 the flow is said to be “ choked ”

∵ Any further increase in q is not possible without a drastic revision of

the upstream conditions in region 1

→ for a certain value of the flow is choked

→ If q > , then a series of pressure waves will propagate

upstream , and nature will adjust the condition is region 1

to a lower subsonic M

→ decrease

For subsonic flow

*q

1M*q

m

E.X 3.8

heat addition → more closer to A , M →1

3.9 1-D Flow with friction3.9 1-D Flow with friction

- In reality , all fluids

are viscous.

- Analgous to 1-D flow with heat addition.

Fanno line Flow

Momentum equation

L

wdDApApAuAu021

222

211

s

s s

w sdspdusdu ..

L

wdxDuupp

0

211

22212

4

Good reference for f : schlicting , boundary layer theory

u

du

P

dP

rMu

udu

u

dPdx

D

f2

22

12

21

21

4

fudxD

ududp ww2

2

14

T

dT

u

du

T

dTd

p

dp

MauT

dT

u

du

M

dM

2

1

2

1

2

1 2

2

2

21

1ln

2

114

M

M

x

xM

rM

r

r

rMD

fdx

22

21

22

21

1

0

0

2

1

2

)1(2

)1(2

21

1

21

1

Mr

Mr

Mr

Mr

T

T

T

T

T

T

∵ adiabatic , To = const

0

21

1

1

2

11

2

2

20

Mr

MdM

Mr

T

dTM

r

T

T

M

dMMM

MD

fdx1

22

21

2

111

24

21

22

21

2

1

1

2

)1(2

)1(2

Mr

Mr

M

M

P

P2

1

22

21

2

1

1

2

)1(2

)1(2

Mr

Mr

M

M

)]1(2[)1(

21

22

2

1

01

02

)1(2

)1(2

r

r

Mr

Mr

M

M

P

P

Analogous to 1-D flow with heat addition using sonic reference condition.

2* )1(2

1

Mr

r

T

T

2

1

2* )1(2

11

Mr

r

MP

P

2

12

* 1

)1(21

r

Mr

M

12

12

*0

0

1

)1(21

r

r

r

Mr

MP

P

2

22

2

*

)1(2

)1(ln

2

114

Mr

Mr

M

M

D

Lf

Table A.4

IF we define are the station where , M = 1

*Lx

*

0

1

2

2

2

21

1ln

2

114L

M

MrM

r

r

rMD

fdx

F: average friction coefficient *

0*

1 Lfdx

L

11111 lnlnlnln

u

uR

T

TCR

T

TCss vv

constTTr

T

TT

TTr

T

T

C

ss

0

10

0

1

1

ln2

1ln

ln2

1ln

P

At point P 0)(2

11

0

TT

r

T 2)(

2

0

uTTC p

)(2 0 TTCu p T high u low above P , M < 1

T low u high below P , M > 1

22 12

.2

11

u

rR

rRru

r

T

22 arRTu

TTCpu 022

2

0

uhh

Fanno line

1M

ds > 0

ds < 0

chocked1m

2m

Supersonic flowSupersonic flow

MM11>1>1

Subsonic flowSubsonic flow

MM11<1<1

MM (M(M22<M<M11)) (M2>M1)(M2>M1)

PP (P(P2>2>PP11))

TT (T(T22>T>T11))

TT00 unchangedunchanged unchangedunchanged

PP00 (P(P0202<P<P0101))

uu ((uu22<<uu11))

ρρ

1-D adiabatic flow with friction