Nucleon emision off nuclei induced by neutrino...

Post on 01-Sep-2020

9 views 0 download

Transcript of Nucleon emision off nuclei induced by neutrino...

Nucleon emision off nuclei induced by neutrinointeractions

M. Valverde

RCNP, Osaka University

NuFact09IIT, Chicago, Illinois, USA

July 22, 2009

Main Nuclear Effects

Pauli blocking: Fermi Gas

Fermi motion: Fermi Gas

Correlations in excited states: RPA

Nucleon binding: Nucleon spectral functions (hole states)

Final State Interactions: Nucleon spectral functions (particlestates)

Nucleon rescattering: Monte Carlo propagation

Self-energy of the Gauge Boson

++

W W W

W W+ + +

+

p N N

π,ρ,...

∆,N*

∆ , N*

π,ρ... + ...

∆ , N*

+

W

W

+

q

pp+q

q

W

+

n

+

+

+

Many Body expansion of

Πνρ

W ,Z0,γ(q, ρ)

Absorption by one Nucleon , 2N,. . .

Real and virtual meson (π, ρ, · · · ) production

Excitation of ∆ or higher resonances

N < F

++

W W W

W W+ + +

+

p N N

π,ρ,...

∆,N*

W n p W+ + N ∆, N*W+N N NNW+N N π , Νρ, ...

∆ , N*

π,ρ... + ...

∆ , N*

+

W

W

+

q

pp+q

q

W

+

n

+

+

+

W+

2

N

π,ρ,...

2

π,ρ,...

++

W W W

W W+ + +

+

p N N

∆,N*

W n p W+ + N ∆, N*W+N N NNW+N N π , Νρ, ...

∆ , N*

π,ρ... + ...

∆ , N*

+

W

W

+

q

pp+q

q

W

+

n

+

+

+

W+ N N’

N,N’ < F

π,ρ,...

π,ρ,...

2

++

W W W

W W+ + +

+

p N N

∆,N*

W n p W+ + N ∆, N*W+N N NNW+N N π , Νρ, ...

∆ , N*

π,ρ... + ...

∆ , N*

+

W

W

+

q

pp+q

q

W

+

n

+

+

+

W+ N

N,N’ < FN’

N’

N < F

++

W W W

W W+ + +

+

p N N

π,ρ,...

∆,N*

W n p W+ + N ∆, N*W+N N NNW+N N π , Νρ, ...

∆ , N*

π,ρ... + ...

∆ , N*

+

W

W

+

q

pp+q

q

W

+

n

+

+

+

W+ N

π,ρ,... 2

∆ , N*

Main features of the model

We work in nuclear matter and get results via LDA

Main features of the model

We work in nuclear matter and get results via LDAbut include whole range of nuclear corrections

Long (RPA) and short range correlations

∆(1232) degrees of freedom

Final State Interactions (FSI)

Nucleon Rescattering (Semi-inclusive Observables)

J. Nieves, J.E. Amaro, M. Valverde, Phys. Rev. C

J. Nieves, M. Valverde, M. J. Vicente Vacas Phys. Rev. C

The Impulse Approximation

General expresion for the cross section

dσ ∼ LµνW µν

All nuclear physics is on the hadronic tensor

d4pµ Sh(p0,p)Sp(p

0 + q0,p + q)︸ ︷︷ ︸

NuclearPhysics

Aµν(p, q)︸ ︷︷ ︸

Vertexinteraction

In Fermi Gas approximation:

∫d3p

2π3

M

Ep+q

M

Ep

Θ (kF (r) − |p|)Θ (|p| − kF (r)) δ(q0 + Ep − Ep+q

)

The Impulse Approximation

General expresion for the cross section

dσ ∼ LµνW µν

All nuclear physics is on the hadronic tensor

d4pµ Sh(p0,p)Sp(p

0 + q0,p + q)︸ ︷︷ ︸

NuclearPhysics

Aµν(p, q)︸ ︷︷ ︸

Vertexinteraction

In Fermi Gas approximation:

d3r

∫d3p

2π3

M

Ep

Θ (kF (r) − |p|)M

Ep+q

Θ (|p| − kF (r))δ(q0 + Ep − Ep+q

)A

RPA Response

ph excitation → series of ph and ∆h excitations.

+ +

q

V

V

V+

µ

ν

ν

ν

µ

µ

V

V

V

+ .....

ν

µ

Z

Z

Z

ZZZ

ZZ

Z

Neutrino Energy (GeV)0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

2 c

m−

38 1

QE

C

0

1

2

3

4

5

6

7

8

9

10 X on O16−µ → + n µνQE Cross−section with FSI for

Benhar

Nieves−SF.FSI.RPA

Nieves−SF.FSI

X on O16−µ → + n µνQE Cross−section with FSI for

Thanks to S. Dytman and S. Boyd for the plot

12

A

10

12

2/GeV2] FG

+ mom.dep.pot.

+ SF

!" "#

6

8

[10-38 cm2/ + SF

+ correlations

MiniBooNE

"$ % "&'()*++, 2

4

d/dQ2 [10

-! " "!" ./"

0 0 0.2 0.4 0.6 0.8 1 1.2 1.4

d

Q2 [GeV

2]A Q [GeV ]

4

5

6

m2/GeV] total

MiniBooNE

7

8

9

10

cm2]

A

total

MiniBooNE

2

3

4

E [10-38 cm

3

4

5

6

7

dcos

[10-38 c

0

1

0 0.5 1 1.5 2

d/dE

0

1

2

3

-1 -0.5 0 0.5 1

d/dco

.0"1 "2" .3%4#%--"

0 0.5 1 1.5 2

E [GeV]-1 -0.5 0 0.5 1

cos

Nucleon Spectral Functions

FSI dressing up the nucleon propagator in the ph excitation

q

p

p+q

Sp,h(ω,p ) = ∓1

π

ImΣ(ω,p)[

ω − p2

2M− ReΣ(ω,p )

]2

+ [ImΣ(ω,p)]2

Hole Interacting particles in a Fermi Sea FSParticle Interaction of the ejected nucleon with the finalnuclear state

In the limit Σ → 0 we recover Fermi Gas

NuFact08

Qualitatively agreement with Benhar, Farina,

Nakamura, Sakuda and Seki [PRD 72 (2005)

053005]

– RPA corrections are not included, but probably

small for |~q| ≥ 500 MeV

– Pion production and 2N channels should be in-

cluded in the “dip” and ∆ regions.

J. Nieves, IFIC, CSIC & University of Valencia 28

DWIA Vs. MC Vs. Transport model

DWIA → Complex optical potential distorts outgoing nucleonwave

Complex potential removes all events not in a given nuclearchannel

DWIA understimates cross sections in semi-inclusive reactions

Does NOT conserve probability (Violates Unitarity)

MC → Transport simulation through a cascade model keeps track:

Change in energy and angle of the emitted nucleon

Production of secondary nucleons

Transport model → Semiclassical transport equation explicitlysolved

Also allows for particle tracking

E.g. GiBUU

The Cascade Model

For a given leptonic part kinematics qµ we randomly select apoint in the nucleus where the boson absorption takes placeaccording to the profile d5/dΩ′dE ′d3r

Pick a random nucleon from the local Fermi sea with givenmomentum p

Fix the kinematics imposing energy conservation

E = q0 +√

p2 + M2 − k2F (r)/2M

Pauli Blocking effects are explicitly included

Nucleon propagation in nuclear medium

Move the nucleon through finite steps in a real potential

V (r) = −kF (r)/2M

Consider a NN collision at every step according to NN elastic crosssection and decide if a secondary nucleon is produced

σN1N2 =

dΩCM

dσN1N2

dΩCM

CT (q, ρ)Θ

(

κ −|p · pCM |

|p||pCM |

)

Medium renormalization and Pauli blocking effects

40Ar(ν, µ− + N), 40Ar(ν, µ+ + N)

no rescatt.rescat.

Eν = 500 MeV

ν+40Ar → ν + p + X

Tp [MeV]

1040dσ/d

Tp

[cm

2/M

eV]

40035030025020015010050

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

no rescatt.rescat.

Eν = 500 MeV

ν+40Ar → ν + n + X

Tn [MeV]

1040dσ/d

Tn

[cm

2/M

eV]

40035030025020015010050

2.5

2

1.5

1

0.5

0

no rescatt.rescat.

Eν = 150 MeVν+40Ar → ν + p + X

Tp [MeV]

1040dσ/d

Tp

[cm

2/M

eV]

140120100806040

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0

no rescatt.rescat.

Eν = 150 MeV

ν+40Ar → ν + n + X

Tn [MeV]

1040dσ/d

Tn

[cm

2/M

eV]

140120100806040

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0

40Ar(ν, ν + N)

no rescatt.rescatt.

Eν = 500 MeVνµ+40Ar → µ− + p + X

Tp [MeV]

1040

dσ/d

Tp

[cm

2/M

eV]

400350300250200150100500

25

20

15

10

5

0

no rescatt.rescatt.

Eν = 500 MeV

νµ+40Ar → µ− + n + X

Tn [MeV]

1040

dσ/d

Tn

[cm

2/M

eV]

400350300250200150100500

20

18

16

14

12

10

8

6

4

2

0

no rescatt.rescatt.

Eν = 500 MeV

νµ+40Ar → µ+ + p + X

Tp [MeV]

1040

dσ/d

Tp

[cm

2/M

eV]

400350300250200150100500

4

3.5

3

2.5

2

1.5

1

0.5

0

no rescatt.rescatt.

Eν = 500 MeV

νµ+40Ar → µ+ + n + X

Tn [MeV]

1040

dσ/d

Tn

[cm

2/M

eV]

400350300250200150100500

7

6

5

4

3

2

1

0

Effects on the extraction of g sA

no rescatt.rescatt.

gsA = 0.0

gsA = −0.19

Eν = 150 MeV

ν+16O → ν + N + X

TN [MeV]

(dσ/d

Tp)/

(dσ/d

Tn)

10090807060504030

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

no rescatt.rescatt.

gsA = 0.0

gsA = -0.19

Eν = 150 MeVν+40Ar → ν + N + X

TN [MeV]

(dσ/d

Tp)/

(dσ/d

Tn)

90807060504030

3

2.5

2

1.5

1

0.5

0

no rescatt.rescatt.

gsA = 0.0

gsA = -0.19

Eν = 500 MeVν+40Ar → ν + N + X

TN [MeV]

(dσ/d

Tp)/

(dσ/d

Tn)

30025020015010050

1.2

1.1

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

Taken from J.Sobczyk@NuInt09

0.0 0.1 0.2 0.3 0.4 0.50

5

10

15

20

25

30

= 0.5 GeVν X for E_−µ → + C12 µνE_p for QE (FSI) :

GiBUUνMadrid

Ankowski

= 0.5 GeVν X for E_−µ → + C12 µνE_p for QE (FSI) :

0.0 0.2 0.4 0.6 0.8 1.00

5

10

15

20

25

30

= 1.0 GeVν X for E_−µ → + C12 µνE_p for QE (FSI) :

GiBUUνMadrid

Ankowski

= 1.0 GeVν X for E_−µ → + C12 µνE_p for QE (FSI) :

GiBUU: Transport Model

Madrid: Proton in a realistic potential

Ankowsky: Effective spectral functions

Nieves: FG + RPA + FSI + Rescattering (No π effects)

Proton Kinetic Energy (GeV)0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

/GeV

2 c

m−

38 1

p d

Tµθ

/d c

osQ

Eσ 2

d

0

10

20

30

40

50

60

70

80

Genie

Ankowski

Nuwro

Nieves

= 60 degreespΘ = 0.5 GeV and ν X for E_−µ → + C12 µνE_p for QE :

Proton Kinetic Energy (GeV)0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

/GeV

2 c

m−

38 1

p d

Tµθ

/d c

osQ

Eσ 2

d

0

10

20

30

40

50

60

70

80

= 60 degreespΘ = 1.0 GeV and ν X for E_−µ → + C12 µνE_p for QE :

Genie

Ankowski

Nuwro

= 60 degreespΘ = 1.0 GeV and ν X for E_−µ → + C12 µνE_p for QE :

Proton Kinetic Energy (GeV)0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

/GeV

2 c

m−

38 1

p d

Tµθ

/dco

sQ

Eσ 2

d

0

10

20

30

40

50

60

70

80

90

100

Ankowski

Genie

Neut

Nieves

= 60 degreespΘ = 0.5 GeV and ν X for E_− p→ + O16 pνE_p for QE :

Proton Kinetic Energy (GeV)0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

/GeV

2 c

m−

38 1

p d

Tµθ

/dco

sQ

Eσ 2

d

0

10

20

30

40

50

60

70

80

90

100

= 60 degreespΘ = 1.0 GeV and ν X for E_− p→ + O16 pνE_p for QE :

Neut

Ankowski

Genie

= 60 degreespΘ = 1.0 GeV and ν X for E_− p→ + O16 pνE_p for QE :

Conclusions

General qualitative agreement on which nuclear effects arerelevant. . . and how they affect cross sections

Quantitative agreement not so good

Thanks!

Thanks to Profs. S. Boyd, S. Ditman and J. Sobczyk forpermission to use their plots

and to the audience!!