New class of refractory ceramics for thermal barrier coatings

Post on 31-May-2022

5 views 0 download

Transcript of New class of refractory ceramics for thermal barrier coatings

Engineering Conferences InternationalECI Digital Archives

Thermal Barrier Coatings IV Proceedings

Summer 6-24-2014

New class of refractory ceramics for thermal barriercoatingsWei PanSchool of Material Science and Engineering, Tsinghua University

Follow this and additional works at: http://dc.engconfintl.org/thermal_barrier_iv

Part of the Materials Science and Engineering Commons

This Conference Proceeding is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion inThermal Barrier Coatings IV by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.

Recommended CitationWei Pan, "New class of refractory ceramics for thermal barrier coatings" in "Thermal Barrier Coatings IV", U. Schulz, GermanAerospace Center; M. Maloney, Pratt & Whitney; R. Darolia, GE Aviation (retired) Eds, ECI Symposium Series, (2015).http://dc.engconfintl.org/thermal_barrier_iv/14

New Class of Refractory

Ceramics for Thermal Barrier

Coatings

Wei Pan School of Materials Science and Engineering

Tsinghua University, Beijing, China

2014/06/24

Low thermal conductivity oxides

Ceramic coating on the surface of blade

Gas outlet and make gas film on

the surface of ceramic

W Pan, Simon R. Phillpot, Chunlei Wan, Aleksandr Chernatynskiy, Zhixue Qu,

MRS Bulletin, Vol. 37, Oct. 2012, p917

No candidate materials take the position of YSZ owing to their comprehensive properties.

Principle for reducing the thermal conductivity

Decrease the sound velocity

Elastic’s modulus, molecular weight

Decrease the phonon mean free path

Increasing the phonon scattering

bpu TTT

1

),(

1

),(

1

),(

1

1

3Vc v

Introduce defects in the crystal

Increasing the concentration of vacancy

Introduce substitutions

Increasing the structure distortion

Increase the complexity

Complex structure

Anisotropic structure

Principle for reducing the thermal conductivity

Main parameter of structure distortion for point defects

Phonon scattering coefficient by point defects

})]/(4.6)/[(2)/{( 22 iiiii GGMMf

Mass difference

Atomic interaction force difference

Size difference

MM i /

GGi /

/i

)/(3 pl CK

Anharmonic parameter γ

Temperature correction of elastic constants

)(0645.0)( 00 TTETE

αl: thermal expansion coefficient,K:bulk modulus,Cp: heat capacity,ρ:density

CL Wan, W Pan, et al, Phys. Rev. B 74,144109-1~9 (2006).

Lattice distortion

High oxygen vacancy concentration oxides

Low Thermal Conductivity Oxides

Oxygen vacancies in oxide ceramics

M M M M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

m

M

M

M

M

M

M

M

M

+ + +

+ + +

+ + +

+ + +

+ + +

- - -

- - -

- - -

- - -

- - -

M M M M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

m

M

M

M

M

M

M

M

M

+ + +

+ + +

+ + +

+ + +

+ + +

- - -

- - -

- -

- - -

- - -

Highly anharmonic area with weak bonding

Perfect crystal Defect crystal

})]/(4.6)/[(2)/{( 22 iiiii GGMMf

Phonon scattering coefficient is significant in the oxygen defect crystal!

Oxygen vacancy- a guide of low thermal conductive ceramics

No oxygen vacancy

Zr0.942Y0.058O3.971Vo(0.02

9)

Gd2Zr2O7Vo(1)

Vo/O=0.029/4

Vo/O=1/8

Vo/O=0

Thermal conductivity decreases with the increase of oxygen defect concentration!

Low thermal conductivity of Ba2ReAlO5 compounds

Wan CL, W Pan et al, Phys. Rev. Lett. 101, 085901 (2008).

The oxygen vacancy concentration is 1/6!

Phonon mean free path of Ba2ReAlO5 compounds

•Lattice constant of Ba2DyAlO5:

a=0.7239nm, b=0.7449nm, c=0.6035nm

•Interatomic distance of Ba2ReAlO5

Re=Dy, a=0.24nm; Re=Er, a=0.24nm;

Re=Yb, a=0.23nm

Wan CL, W Pan et al, Phys. Rev. Lett. 101, 085901 (2008).

Thermal expansion coefficients of Ba2ReAlO5 compounds

Wan CL, W Pan et al, Phys. Rev. Lett. 101, 085901 (2008).

400 600 800 1000 1200

1.0

1.5

2.0

2.5

3.0

3.5

Ba6Yb

2Al

4O

15

Ba6Er

2Al

4O

15

Ba6Dy

2Al

4O

15

Therm

al

conducti

vit

y (

W . m

-1 . K

-1 )

Temperature ( K )

LaPO4

-Y2Si

2O

7

La2Zr

2O

7

Y2SiO

5

Y4Si

2O

7N

5

W3Nb14O

7

7YSZ

Ba2ErAlO

5

Gd2SrAl

2O

7

Yb2Sn

2O

7

Ba6Gd

2Al

4O

15

Thermal conductivity of Ba6Ln2Al4O15

Vo/O=1/6

400 600 800 1000 1200 14006

8

10

12

14

16

18T

he

rma

l e

xp

an

sio

n (

10

-6 K

-1 )

Temperature ( K )

La2Ce

2O

7

Ba2DyAlO

5Ba

2YbAlO

5

Bonding coat

Yb2Sn

2O

7

Sm2Zr

2O

7

La2Zr

2O

7

8YSZ

Gd2SrAl

2O

7

Ba6Ln

2Al

4O

15

High thermal expansions of the Ba6Ln2Al4O15 compounds

Effect of anion and cation defects on the

thermal conductivity

Gd8+xCa2+y(SiO4)6O2+3x/2+y

Low Thermal Conductivity Oxides

Zhixue Qu, Taylor D. Sparks, Wei Pan, David R. Clarke, Acta Mater. 59 (2011) 3841–3850

Variations in composition from the stoichiometric composition according to the formula Gd8+xCa2+y(SiO4)6O2+3x/2+y.

Zhixue Qu, Taylor D. Sparks, Wei Pan, David R. Clarke, Acta Mater. 59 (2011) 3841–3850

Thermal conductivity as a function of nominal defect concentration per unit cell.

Zhixue Qu, Taylor D. Sparks, Wei Pan, David R. Clarke, Acta Mater. 59 (2011) 3841–3850

Low Thermal Conductivity Oxides

Substitution of atoms, alloying in oxides (pyrochlore and fluorite A2B2O7 oxides)

Substitution defects in oxide ceramics

Perfect lattice Defective lattice

Phonon scattering

Lattice parameter

(La1-xGdx)2Zr2O7 pyrochlores

CL Wan, W Pan, et al, Phys. Rev. B, 74, 144109 (2006).

Pyrochlore structure M M M M M M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

m

M

M

M

M

M

M

M

M

G G

G

G

G G

G

G G’ G’

G’ G’

Small difference of doping

ion size at “A” site:

Thermal conductivities of (La1-xGdx)2Zr2O7

CL Wan, W Pan, et al, Phys. Rev. B, 74, 144109 (2006).

Lattice softening in (La1-xGdx)2Zr2O7

Young’s modulus

(Average sound velocity)

Phonon mean free path

CL Wan, W Pan, et al, Phys. Rev. B, 74, 144109 (2006).

(La1-xYbx)2Zr2O7 pyrochlores

Wan CL, W Pan et al. Acta Mater., 58, 6166–6172, (2010).

M M M M M M

M

M

M

M

M

M

M

M

M

M

M

m

M

M

M

M

M

M

M

M

M

M

M

M

G G

G

G

G G

G

G

Big difference of doping ion

size at “A” site:

Double phase structure

La-rich

Yb-rich

Positive temperature coefficient

Wan CL, et al. Acta Mater., 58, 6166–6172, (2010).

Thermal conductivities of (La1-xGdx)2Zr2O7

Glass-like

“Alloying limit” vs “Amorphous limit”

1/3 2 / 32/3

min 2

06 ( 1)

i T x

B i xi

T x ek n v dx

e

2 1/3/ (6 )i i Bv k n

Minimum thermal conductivity

Amorphous limit

Alloying limit

Wan CL, et al. Acta Mater., 58, 6166–6172, (2010).

(La1-xYbx)2Zr2O7- microstructure

X=1/2 X=1 (Yb2Zr2O7)

X=0 (La2Zr2O7) X=1/6 X=1/3

X=2/3 X=5/6

Surface morphology of (La1-xYbx)2Zr2O7 after annealing at 1600oC for 20hours

(La1-xYbx)2Zr2O7-toughness

Toughness measured by indentation method

c

a

1/ 2

3/ 2C

E PK

H c

(Sm1-xYbx)2Zr2O7

CL wan, et al, J. Am. Ceram. Soc., 94 [2] 592–596 (2011).

Order-disorder Transition in Solid

Solutions with A site doping in A2B2O7

Low Thermal Conductivity Oxides

Order-disorder transition in (Sm1-xYbx)2Zr2O7

20 30 40 50 60 70 80 90

511

331

311

2

Sm2Zr

2O

7(P)

(Sm5/6

Yb1/6

)2Zr

2O

7(P)

(Sm2/3

Yb1/3

)2Zr

2O

7(F)

CP

S SmYbZr2O

7(F)

(Sm1/3

Yb2/3

)2Zr

2O

7(F)

(Sm1/6

Yb5/6

)2Zr

2O

7(F)

Yb

2Zr

2O

7(F)

Pyrochlore

Fluorite

XRD pattern

CL wan, et al, J. Am. Ceram. Soc., 94 [2] 592–596 (2011).

Raman spectral analysis

200 400 600 800 1000

Yb2Zr

2O

7

(Sm1/6

Yb5/6

)2Zr

2O

7

(Sm1/3

Yb2/3

)2Zr

2O

7

SmYbZr2O

7

(Sm2/3

Yb1/3

)2Zr

2O

7

(Sm5/6

Yb1/6

)2Zr

2O

7

Ra

ma

n in

ten

sity

Raman shift (cm-1)

Sm2Zr

2O

7

Pyrochlore (I)

Fluorite (III)

Disordered

Pyrochlore (II)

CL wan, et al, J. Am. Ceram. Soc., 94 [2] 592–596 (2011).

Young’s modulus of (Sm1-xYbx)2Zr2O7

CL wan, et al, J. Am. Ceram. Soc., 94 [2] 592–596 (2011).

Thermal conductivity of (Sm1-xYbx)2Zr2O7

CL wan, et al, J. Am. Ceram. Soc., 94 [2] 592–596 (2011).

Low Thermal Conductivity Oxides

Vacancy, substitution and interstitial TiO2-doped YSZ

No oxygen vacancy is

introduced when Ti4+

substituting Zr4+.

M. Zhao, W Pan, Acta Mater., 61, 5496-5503(2013).

Merits

Stabilize the T-prime phase at high

temperature.

Enhance the ferroelastic toughening

at high temperature.

Ti doping YSZ (substitution + interstitial)

Schaedler TA, et al. J Am Ceram Soc 2007;90:3896.

Thermal conductivity of TiO2-doped YSZ

M. Zhao, W Pan, Acta Mater., 61, 5496-5503(2013).

Ti doping in YSZ (substitution + interstitial)

substitution Interstitial

2ZrO × ×

2 Zr OTiO Ti +2O2ZrO 4 2

2 i iTiO Ti 2O 2 2

i O O2O 2V 2O

M. Zhao, W Pan, Acta Mater., 61, 5496-5503(2013).

Low Thermal Conductivity Oxides

Complex Structure Oxides

RE9.33+x(SiO4)6O2+3x/2

Low modulus and large molecular weight

Ruifen Wu, Wei Pan et al. Acta Mater., 60, 5536–5544(2012).

Ruifen Wu, Wei Pan et al. Acta Mater., 60, 5536–5544(2012).

Defects in RE9.33+x(SiO4)6O2+3x/2 with apatite

structure

Two types of defects

Thermal conductivity of RE9.33+x(SiO4)6O2+3x/2

Extremely low!

κ=1.1W/m/K

Ruifen Wu, Wei Pan et al. Acta Mater., 60, 5536–5544(2012).

Low Thermal Conductivity Oxides

Thermal conductivity in anisotropy oxides

AB Du, W Pan. J. Am. Ceram. Soc., 92[11], 2687–2692(2009).

Textured LaPO4 with Monazite structure

Texture controlled by processing

α = S(200)/S(120)

AB Du, W Pan. J. Am. Ceram. Soc., 92[11], 2687–2692(2009).

Different textured LaPO4 oxides prepared with controlled sintering process.

Thermal Conductivity of the Textured LaPO4

511.2

197.11

616.0372.1

k

1.37 W/mK

(200) Plane

(120) Plane

AB Du, W Pan. J. Am. Ceram. Soc., 92[11], 2687–2692(2009).

Thermal Conductivity of the RE2SrAl2O7

CL Wan, TD Sparks, W Pan, DR Clarke. J. Am. Ceram. Soc., 93[5], 1457–1460(2010).

RE2SrAl2O7

RE=Sm, Eu, Gd, Dy

Thermal Conductivity of the RE2SrAl2O7

CL Wan, TD Sparks, W Pan, DR Clarke. J. Am. Ceram. Soc., 93[5], 1457–1460(2010).

Calculation by first principles and density

functional perturbation theory (DFPT) method

Jing Feng, Wei Pan, Acta Materialia, 60, 3380–3392(2012).

Calculated using the first principlesand density functional perturbation theory(DFPT) method

The calculations were supplemented using the quasi-harmonic approximation (QHA), and spin polarized local density approximation (LSDA)

Calculated thermal conductivity for different orientation

Jing Feng, Wei Pan, Acta Materialia, 60, 3380–3392(2012).

Applications

Could pyrochlore Sm2Zr2O7 , Gd2Zr2O7

oxides replace YSZ for TBC?

Low Thermal Conductivity Oxides

Spray TBCs by APS

Spray condition①:

Ar/H2 35/7.4[l/min]

Current 600[A]

Spray distance 150[mm]

Supplying speed 60[g/min]

(conventional)

Substrate Spray gun

Spray condition②:

Ar/H2 Same as ①

Current 500[A]

Spray distance Same as ①

Supplying speed Same as ①

Sm2Zr2O7

Gd2Zr2O7

8YSZ

Observation after the Spraying

① ②

8YSZ Sm2Zr2O7 Gd2Zr2O7

Spray efficiency is equal to YSZ (Spray condition ① ; YSZ:18μm/pass Sm2Zr2O7 :24μm/pass)

Spray condition ① ② ① ②

YSZ Sm2Zr2O7 Gd2Zr2O7

Porosity:12.0%

Porosity :11.8%

Porosity :4.9% Porosity :5.3%

Porosity :6.6% Porosity :7.4%

Spray

condition②

Spray

condition①

Observation of TBCs Cross Section

Estimation of the Thermal Conductivity

TBCiS

substratebi

tTT

tTT

/)(

)(12

1:Substrate thermal conductivity

2:TBC thermal conductivity

tTBC tSubstrate

Tb

Ts

Ti

Cooling air

TBC specimen

CO2 LASER nozzle

Radiation camera (Measuring surface

temperature,Ts) CCD camera

0

200

400

600

800

1000

1200

1400

0 10 20 30

Tim e (m in)

TBC surface tem

perature  (℃

0

0.5

1

1.5

2

2.5

3

The

rmal cond

uctivity λ (kcal/mh℃

)TBC surface tem perature

λ=0.38Kcal/m h℃(G d2Zr2O 7/C oNiC rAlY)

(ex)λ=0.96Kcal/m h℃ (YSZ/C oNiC rAlY)

λ=0.39Kcal/m h℃(Sm 2Zr2O 7/C oNiC rAlY)

Thermal conductivity of porous TBC(Sm2Zr2O7 and Gd2Zr2O7)

Thermal conductivity of the Porous TBCs

Spray condition YSZ Sm2Zr2O7 Gd2Zr2O7

Spray condition ① ○ ○ ○

Spray condition ② ○

Bending test (Servo machine with SEM)

3

Thickness of coating

0.3

2

26

TBC

Specimen size

Bending test

Actuator Specimen

Crosshead

Load Strain gauge

YSZ

Spray condition ①

Spray condition②

Sm2Zr2O7 Gd2Zr2O7 Sm2Zr2O7

ε=0.35% ε=0.32% ε=0.22% ε=0.38%

・estimating the limit strain for vertical crack *

・The limit strain for vertical crack of Sm2Zr2O7 is equal to conventional YSZ

limit strain

Estimation for Bending strength

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

The lim

it s

trai

for

vert

ical

cra

ck 

 ε

 (%

)

YSZ Sm2Zr2O7 Gd2Zr2O7 Sm2Zr2O7

Spray Condition ① Spray condition ②

The limit strain of vertical crack of Sm2Zr2O7 is equal to conventional YSZ

0

200

400

600

800

1000

1200

1 10 100 1000 10000

TBC life (cycles)

Difference

of tempe

rature (Ts-Ti=Δ

T)   (℃)

Ts : TBC surface temperature

Tb : TBC / substrate interface temperature

;Sm2Zr2O7/CoNiCrAlY TBC

;Gd2Zr2O7/CoNiCrAlY TBC

;YSZ/CoNiCrAlY TBC

ΔT=900℃

tTBC=0.5mm

Thermal cycle results for flat plate specimen

200

300

400

500

600

700

800

1 10 100 1000 10000

Nunber of cycle to spall, N (cycles)

Tem

prerature difference ΔT   (℃)

Ti         :900℃Thickness   :0.5m mTest specim en:R5.5 C ylindrical ●:Sm 2Zr2O 7-TBC

YSZ-data band

Thermal cycle results for cylindrical specimen

;Sm2Zr2O7/CoNiCrAlY TBC

;Gd2Zr2O7/CoNiCrAlY TBC

;YSZ/CoNiCrAlY TBC

Tsinghua University: Chunlei Wan, Jing Feng, Zhixue Qu, Ruifen Wu, Xiaorui Ren, Meng Zhao

Harvard University: David R. Clarke, Taylor D. Sparks

University of Florida : Simon R. Phillpot, Aleksandr Chernatynskiy

Acknowledgements to contributors

Publications on TBCs

1. M Zhao, W Pan, Effect of lattice defects on thermal conductivity of Ti-doped, Y2O3-stabilized ZrO2, Acta Mater. 61 (2013) 5496–5503.

2. RF Wu, W Pan, XR Ren, CL Wan, ZX Qu, AB Du, An Extremely Low Thermal Conductive Ceramic: RE9.33(SiO4)6O2 Silicate Oxyapatite, Acta Mater. 60 (2012) 5536–5544.

3. J. Feng, B. Xiao, R. Zhou, W. Pan, David R. Clarke, Anisotropic Mechanical and Thermal Properties of Double Perovskite Slab-Rocksalt Layer Ln2SrAl2O7 (Ln = La, Nd, Sm, Eu, Gd and Dy), Acta Mater. 60 (2012) 3380–3392.

4. ZX Qu, CL Wan, W Pan, Thermophysical Properties of Rare-earth Stannates: Effect of Pyrochlore Structure, Acta Mater. 60 (2012) 2939–2949.

5. ZX Qu, Taylor Sparks, W Pan, , David R. Clarke, Thermal Conductivity of the Gadolinium Calcium Silicate Apatites: Effect of Different Point Defect Types, Acta Mater. 59 (2011) 3841–3850.

6. J. Feng, B. Xiao, C. L.Wan, Z.X. Qu, Z.C. Huang, J.C. Chen, R. Zhou, W Pan, Electronic Structure, Mechanical properties and Thermal conductivity of Ln2Zr2O7 (Ln = La, Pr, Nd, Sm, Eu and Gd) Pyrochlores, Acta Mater. 59 (2011) 1742–176

7. CL Wan, W Pan, Glasslike thermal conductivity in ytterbium doped lanthanum zirconate pyrochlore,Acta Mater. 58 (2010) 6166–6172.

8. CL Wan, W Pan, Influence of B site substituent Ti on structure and thermophysical properties of A2B2O7-type pyrochlore Gd2Zr2O7, Acta Mater., 57 (2009) 4782–4789.

9. J. Feng, B. Xiao, R. Zhou, W. Pan, Anisotropy in elasticity and thermal conductivity of monazite-type REPO4 (RE = La, Ce, Nd, Sm, Eu and Gd) from first-principles calculations, Acta Mater., 61 (2013) 7364–7383.

10. XR Ren, W Pan, Mechanical properties of high temperature degraded yttria stabilized zirconia, Acta Mater. 69 (2014) 397–406.

11. Chen J, Lian J, Wang LM, Ewing RC, Wang RG, Pan W. X-ray photoelectron spectroscopy study of disordering in Gd2(Ti1-xZrx)2O7 pyrochlores. Phys. Rev. Lett. 88(10), 105901 (2002).

12. Wan CL, Qu ZX, He H, Luan D, Pan W, Ultralow thermal conductivity in highly anion-defective aluminates, Phys. Rev. Lett. 101, 085901 (2008).

13. J. Feng, C. Wan, B. Xiao, R. Zhou, W Pan, D. R. Clarke, Calculation of the thermal conductivity of R2SrAl2O7 (R = La, Nd, Sm, Eu, Gd, Dy), Phy. Rew. B, 84, 024302 (2011)

14. Wan CL, Pan W, Xu Q, Qin YX, Wang JD, Qu ZX, Fang MH, Effect of point defects on the thermal transport properties of (LaxGd1-x )2Zr2O7 : Experiment and theoretical model. Phys. Rev. B 74, 144109-1~9 (2006).

15. J. Feng, B. Xiao, R. Zhou, and W. Pan, Eectronic and magnetic properties of double perovskite slab-rocksalt layer rare earth strontium aluminates natural superlattice structure, J. Appl. Phys. 113, 143907 (2013)

16. J. Feng, B. Xiao, R. Zhou, and W. Pan, Thermal expansions of Ln2Zr2O7 (Ln=La, Nd, Sm, and Gd) pyrochlore, J. Appl. Phys. 111, 103535 (2012).

17. J. Feng, B. Xiao, Z. X. Qu, R. Zhou, and W. Pan,Mechanical properties of rare earth stannate pyrochlores Appl. Phys. Lett., 99, 201909 (2011).

18. W Pan, Simon R. Phillpot, Chunlei Wan, Aleksandr Chernatynskiy, Zhixue Qu, Low Thermal Conductivity Oxides, MRS Bulleting. Vol 37 Oct 2012, 917-922.

19. J. Feng, B. Xiao, R. Zhou and W. Pan, Thermal expansion and conductivity of RE2Sn2O7 (RE = La, Nd, Sm, Gd, Er and Yb) pyrochlores, Scripta Mater. 69 (2013) 401–404

20. J Feng, B Xiao, R Zhou and W Pan, Thermal conductivity of rare earth zirconate pyrochlore from first principles, Scripta Mater. 68 (2013) 727–730

21. J Feng, XR Ren, XY Wang, R Zhou, W Pan, Thermal Conductivity of Ytterbia Stabilized Zirconia, Scripta Mater.,66 (2012) pp. 41-44

22. XR Ren, SC Guo, M Zhao, W Pan, Thermal conductivity and mechanical properties of YSZ/LaPO4, J. Mater Sci (2014) 49:2243–2251.

23. Qu ZX, Wan CL, Pan W. Thermal expansion and defect chemistry of MgO-doped Sm2Zr2O7. Chem. Mater. 19 (20), 4913 (2007).

Publications on TBCs.

24. Meng Zhao, Xiaorui Ren, and Wei Pan, Effect of Lattice Distortion and Disordering on the Mechanical Properties of Titania-Doped Yttria-Stabilized Zirconia, J. Am. Ceram. Soc., 97 [5] 1566–1571 (2014)

25. CL Wan, ZX Qu, AB Du, W Pan, Order-disorder transition and unconventional thermal conductivities of the (Sm1-xYbx)2Zr2O7 series, J. Am. Ceram. Soc., 94 [2] 592–596 (2011).

26. AB Du, CL Wan, ZX Qu, RF Wu, W Pan,Effects of the texture on the thermal conductivity of the LaPO4 monazite,J. Am. Ceram. Soc., 93 [9] 2822–2827 (2010).

27. CL Wan, Taylor D. Sparks, W Pan, and David R. Clarke, Thermal Conductivity of the Rare-Earth Strontium Aluminates, J. Am. Ceram. Soc., 93 [5] 1457–1460 (2010)

28. AB Du, CL Wan, ZX Qu, W Pan, Thermal transport properties of monazite-type RePO4(Re = La, Ce, Nd, Sm, Eu, Gd), J. Am. Ceram. Soc., 92 [11] 2687–2692 (2009).

29. Xu Q, Pan W, Wang JD, Wan CL, Qi LH, Miao HZ, Mori K, Torigoe T, Rare- earth zirconate ceramics with fluorite structure for thermal barrier coatings. J. Am. Ceram. Soc. 89 (1), 340 (2006).

30. Pan W, Shi SL. Microstructure and mechanical properties of Ti3SiC2/3Y-TZP composites by spark plasma sintering. J. Eur. Ceram. Soc. 27 (1), 413 (2007).

31. Pan W, Wan CL, Xu Q, Wang JD, Qu ZX, Thermal diffusivity of samarium- gadolinium zirconate solid solutions. Thermolchim. Acta 455 (1-2), 16 (2007).

32. J. Feng, B. Xiao, C. Wan, Z. Qu, R. Zhou, W Pan, Electronic and elastic properties of a double perovskite slab–rocksalt layer of Eu2SrAl2O7 investigated by LSDA + U, Solid State Communications 151 (2011) 1326–1330

33. Xu Q, Pan W, Wang JD, Qi LH, Miao HZ, Mori K, Torigoe T. Preparation and thermophysical properties of Dy2Zr2O7 ceramic for thermal barrier coatings. Mater. Lett. 59, 2804 (2005).

Publications on TBCs.

Thanks for your attention!