Neutrino Coherent scaering. Will we see it in 2017?

Post on 10-Apr-2022

3 views 0 download

Transcript of Neutrino Coherent scaering. Will we see it in 2017?

NeutrinoCoherentsca/ering.Willweseeitin2017?

YuriEfremenko,UTKFeb15th2017

HEP&Astroseminar

TimescalesinHEP

0

0.5

1

1.5

2

2.5

3

3.5

1900 1920 1940 1960 1980 2000 2020

Proposed

Discovered

ApplicaRon Neutrinos

Higgs

CEνNS

CEνENSàCoherentElasRcNeutrinoNucleusSca/ering

Supersymmetry

NeutrinosarepopularinmanycommuniRes.

ThisisactualshotatLeadS.D.

Whatdoweknowaboutneutrinos?

I.Theydoexist

F.A.Sco/,Phys.Rev.48,391(1935)

II.TherearethreelightneutrinospeciesNν=2.984±0.008 Z0

III.Neutrinosdooscillateandthereforetheyaremassive

(observed-b

g)/

expe

cted

H

WhatwedonotKnowAboutNeutrinos?ExactmassvalueMasshierarchyAreneutrinoitsownanRparRcleHowneutrinosaffectevoluRonoftheuniverseArethereanysterileneutrinosNeutrinointerac;ons

dσdTA

= GF2

4πmA Z 1− 4sin2θW( )− N"

#$%

21−mA

TA

2Eν2

"

#&

$

%'F 2 (Q2 )

σ tot = GF2Eν

2

4πZ 1− 4sin2θW( )− N"#

$%

2F 2 (Q2 )

mA − nucleus mass

TA − kinetic energy of recoil nucleus

Eν − neutrino energy

Z − nucleus charge

N − number of neutrons in the nucleusF is nucleus form factor

Eν < 50MeV

Weinberg(Electroweek)angle

cosϑW =mW

mZ

= 0.23120 ± 0.00015

ItisfreeparameterintheStandardModel

Thereisnofundamentaltheorywhichexplainitsvalue

Itis“running”constant,itdependsonthemomentumtransfer.

CEvNSandWeinbergangle?

arXiv:1411.4088

�coh

⇠G2

f

E2

4⇡(Z(4 sin2✓

w

� 1) + N)2

Barbeau

MeasurementwithtargethavingdifferentZ/NraRoisrequired.

Aprecisiontestof𝜎isasensiRvetestofnewphysicsabovetheweakscale.SensiRvitytoahypotheRcaldarkZmediator,apossibleexplanaRonforthe(g-2)μanomaly,canbereached

witha5%measurement.

CorrecRontog-2formuonmagneRcmomentduetoa

lightmediator

COHERENT

Non-StandardInteracRonsofNeutrinos:newinterac>onspecifictoν’s

LNSI⇤H = �GF⇤

2

q=u,d�,⇥=e,µ,⇤

[⇥̄��µ(1� �5)⇥⇥ ]⇥ (⇤qL�⇥ [q̄�µ(1� �5)q] + ⇤qR

�⇥ [q̄�µ(1 + �5)q])

J.HighEnergyPhys.03(2003)011

WhytoSearchforCoherent𝛎-NucleusSca/ering?

J. Barranco et al., JHEP0512:021, 2005 K. Scholberg, Phys.Rev.D73:033005, 2006

Non-Standard𝛎InteracRons(Supersummetry,neutrinomass

models)canimpactthecross-secRondifferentlyfordifferentnuclei

COHERENT

DUNE

–measuringthecharge-parity(CP)violaRngphaseCP,

–determiningtheneutrinomassordering(thesignofΔm212)

–precisiontestsofthethree-flavorneutrinooscillaRonparadigm

~1billionproject

arXiv:1604.05772v1

IfyouallowforNSItoexist,can’ttelltheneutrinomassorderingwithoutconstrainsonNSI

NOw/noNSI...

...looksjustlikeIOw/NSI

NewPaperbyPilaretal.

andmoreintherecentliterature...

µBµB

Ne target

NeutrinomagneRcmomentd�

dE=

⇡↵2µ2⌫Z

2

m2e

✓1� E/k

E+

E

4k2

◆Signatureisdistor>onatlowrecoilenergyE

èrequires low energy threshold

See also Kosmas et al., arXiv:1505.03202

PresentLimit

PhysicsforFutureExpansions

A. Drukier & L. Stodolsky, PRD 30 (84) 2295

•  Thecross-secRonissensiRvetothemagnitudeoftheNeutrinoMagneRcMoment(Supersymmetry,LargeExtraDimensions,RightHandedWeakCurrents).

•  COHERENTmaybethefirstexperimenttoobservetheEffecRveNeutrinoChargeRadius.

•  TheneutrondistribuRonwithinthenucleusimpactstherecoilenergydependentcross-secRon(FormFactor)

K. Patton, et al., PRC 86, 024216

A. C. Dodd, et al., PLB 266 (91), 434

A. J. Anderson et al., PRD 86 013004 (2012)

J. Papavassiliou, J.Bernabeu, M. Passera, HEP-EPS 2005, Lisbon, arXiv:hep-ph/0512029

16

Thedevelopmentofacoherentneutrinosca/eringdetecRoncapabilityprovidesthemostnaturalwaytoexplorethesterile

neutrinosector.

WhytoSearchforCoherent𝛎-NucleusSca/ering?

J.R. Wilson, PRL 32 (74) 849

Barbeau 17

LargeeffectonSupernovaedynamics.Weshouldmeasureittovalidatethemodels

WhytoSearchforCoherent𝛎-NucleusSca/ering?

CDMS II Ge (2009)

Xenon100 (2012)

CoGeNT (2012)

CDMS Si (2013)

EDELWEISS (2011)

DAMA SIMPLE (2012)

ZEPLIN-III (2012) COUPP (2012)

LUX (2013)

Plot: E. Figueroa-Feliciano

Barbeau 18

ItwillbeirreduciblebackgroundforDarkMa/erexperiments

(Stodolsky) 10kpc,10tonà100events

~1Keventspertonperyear.

+ =

1.E-441.E-431.E-421.E-411.E-401.E-391.E-381.E-37

0 10 20 30 40 50

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

0 10 20 30 40 50

CrossSecRonisLarge!!!

Eν,MeV

σ,cm2

ν+Xe

ν+He

ν+He

ν+Xe

IBD

Eν,MeV

ButtheSignalisHardtoDetect

Erecoils,MeV

NeutrinoCoherentSca/eringdetecRon

A

Z0

A

StoppedPionFaciliRes

NuclearReactors

1.3MWDistance~20mEν~40MeVPulsedbeam2*1015ν/sec

3GW–1MWDistance~20mEν~4MeV

ConRnuesoperaRon6*1020ν/sec

!

RaceforthefirstCEvNSdetecRon

Experiment NeutrinoSource

EffecRveEv Distance Technology Target Mass

RicochetatChooz Chooz2x4.3GW ~4MeV 355m Bolometer Ge,Zn 5+5kg

RicochetatMIT MITR5MW ~4MeV 4m Bolometer Ge,Zn 5+5kg

MINER TexasA&M1MW ~4MeV 2m IonizaRon Ge,Si ~kg

CONNIE Angra3.8GW ~4MeV 30m CCD Si 0.1kg

RED-100 Kalinin3.2GW ~4MeV 25m 2phase Xe 100kg

vGeN Kalinin3.2GW ~4MeV 10m IonizaRon Ge ~5kg

COHERENT SNS(DAR) ~40MeV 20-30m IonizaRon CsI,Ar,Ge 14,30,10kg

Inredshownexperimentswhicharetakingdata

Si Ge ArXe

He

25

MyCar

SNS layout

26

1.3GeVprotonlinearacceleratorAccumulatorring

Maintarget

Strippingfoil

ν⋅⋅⋅ x ~1000 ⋅⋅⋅

LINAC:

Accumulator Ring:

Repeat 60/sec.

Mercury target

27

MercuryInventory–20tFlowrate340kg/sec

Vmax3.5m/secTin600CTout900C

Mercury lasts the entire 40 year lifetime of SNS no change is required

Stainless steel vessel should be replaced periodically

Some Details of Interaction in the Target

for 1.3 GeV protons

AverageinteracRonenergyis~1.1GeV AverageinteracRondepth~11cm

ProtoninteractsnearthefrontpartofthetargetTheybreakdownMercurynucleusandproducepions.

Decay In Flight or Decay At Rest

29

200MeV/cpionsrangeinmercuryis~5cm

Veryfewpionshaveachancetodecaybeforecomingtotherest

PionSpectra

BecauseofthebulkMercurytarget,SNSisamostlyDecayAtRestfacility!!

NeutrinoProducRonatSNS

Hg

π+

π-~99%

µ+

e+

pνµ

νµ

νe

τ ≈ 26 nsec

τ ≈ 2200 nsec

Neutrons

CAPTURE

DAR +DIF

νµ

~1%DIF

µ-

CAPTURE

νµ

~94%

νµ

νe

τ < 2200 nsec e-

νµ

Neutrino Production at the SNS

31

SNSISIS,LANSCE

ThegoodapproximaRonis

Nπ+/proton=0.14*E(GeV)-0.05ForE~0.8-1.5GeV

Eachπ+generates

electronneutrinoandmuonneutrinoandanRneutrino

!

Target MaxRecoil(keV) CrosssecRon10-42cm2 Threshold,keVnr Nevents,year

He 483 13.8 10 134

C 161 125 10 370

Ne 96 609 10 980

Si 69 688 0.1 990

Ar 48 1700 10 1080

Ge 27 5830 3 2560

I 15 19400 10 732

Xe 15 22300 1 5970

1MWspallaRonsource,15mfromthetarget,100kgdetector,prompt30MeVneutrinos,eventratesforCEvNS

CollaboraRontomakethefirstdetecRonoftheNeutrinoNeutralCurrentCoherentsca/eringattheSNS

n

ThereareMulRpleFastNeutronSourcesinsidetheTargetbuilding.

IntermediateNeutronswithenergymorethan50keVcanproducenuclearrecoils.Thisismajorbackground!!!!

!

35

*103cm

MainTarget

ProtonTransportBeam

“Out-of-beam”events,primarily

muons.

“In-Beam”events,considerablymoreneutronevents(and16xless“liveRme”)

Startedin2013

Pos5islocaRonwithverylowneutronsflux.Needshieldingagainstgammasandcosmic.NowitiscalledNeutrinoAlley

NeutrinoAlleyattheSNS

BasementlocaRonisfarawayfromNeutronbeamLines.ExtraprotecRonfromcosmicrays

Neverbeenmeasured.ThereareonlytheoreRcalcalculaRons

Thisreac>ononLeadisusedbyHALOexperimentintheSNOlab,towatchforsupernovae.

In

InthisarRcleauthorsbelievethatJ.Davisiswrongbya~6ordersofmagnitude.

authorexplainsDAMAseasonalmodulaRonsbysolarneutrinoinducedinteracRonsinthe

DAMAshielding

FirstStepIstoMeasureNeutrinoInducedNeutronsNINs

(FirstNeutrinoExperimentattheSNS)

LiquidScinRllatordetectorsinsideLead,Poly,Cd,Watershieldwithmuonveto

Onthenextdaya{erwefinishedinstallaRonSNSgotwaterleakinthe

accelerator,thentargetfailed.

TookgoodstaRsRcsduring2014-2015

Totalof175daysof“beam”

Havenotseenanythingabovebackground.Thisisagoodnewsforus!!!!

NeutrinoInducedNeutrons–NINsSecondAFempt

•  LiquidscinRllatordetectorswithneutrongammaseparaRoncapability•  TwosetswithLead(1ton)andIron(700kg)targets.•  NeutrondetecRonEfficiency~10%Leadtargetàalmostayearofdataaccumulated,IrontargetdatatakingisstarRngnow.

ThreeDetectorTechnologyforCOHERENTPhaseI

CsI LAr HPGe

Target TargetMass MaxRecoil(keV)

CrosssecRon10-42cm2

Threshold,keVnr

Nevents,year

Ge ~10kg 27 5830 3 280

I 14kg 15 19400 10 170

Ar 30kg 15 1700 10 250

Neutronswithenergy>50keVcanproducesimilarrecoilsàmajorbackground

CsIdetector–MajorPlayerisUCh14.5kgultrapureCsIcrystalinsidecomprehensiveshielding

andacRvemuonvetosystem

LiquidArgonDetector–MajorplayerisUISpecs:•  LAr

•  ~30kgfiducialvolume

•  2×HamamatsuR5912-02-MOD8”PMTs•  8‘’borosilicateglasswindow•  Standardbialkaliphotocathode(K2CsSb)•  14dynodes•  QE:18%@400nm

•  WLS-Tetraphenylbutadiene(TPB)

•  Cryomechcryocooler–90Wt•  PT90single-stagepulse-tubecoldhead•  compressor:CP950

LArConstrucRon•  AcryliccylindersanddiscscoatedbyTPB

•  3xcylinderbyairbrush•  2xdiskbyevapora>onatORNL

•  ThethicknessoftheTPBisop>mal~0.2mg/cm^2

•  Teflonwrap

•  Detectorwasassembledatcleanroomatthestagingarea

LArat“Neutrinoalley”

LArfillingline

Liquefier

CENNS-10Pumpingcart

Gasrack

Cryocompressor

SCrackDAQrack

LArdetectorfilling

•  ~9daysforfilling•  160lbsLAr

12/12/2016

Shieldingdesignandstatus

Water-9in(polytank)•  Onplace•  Notenoughwateronthetop

(~1”)->waterbags(~5”)

Copper–1/2in•  Done,readyfor

installa>on

Lead-4in(2layersofchevronbricks)•  Needseismicanalysis

ProjectedeventratesforLAr

ArrayofGermaniumDetectors-MajorPlayerisNC

Upto10kgofGedetectorsusingcommonLNpoolSurroundedbycomprehensiveshielding

Dewarfabrica>onnearingcomple>on.

ExpecteddeliverySpring2017.

GearrayconstrucRon

OtherpotenRalneutrinophysicsattheSNS

NeutrinooscillaRons–TestoftheLSNDclaim

SearchforSterileNeutrinos

NeutrinoMagneRcmoment

MeasurementofNeutrinoSpectrafromMuonDecay

ChargeCurrentCrosssecRonMeasurements

Core-collapsesupernovae

SN 1987a Anglo-Australian Observatory

•  Destruction of massive star initiated by the Fe core collapse –  1053 ergs of energy released –  99% carried by neutrinos –  A few happen every century in our Galaxy, but the last one

observed was over 300 years ago

•  Dominant contributor to Galactic nucleosynthesis

•  Neutrinos and the weak interaction play a crucial role in the mechanism, which is not not well understood

SN neutrino spectra, 0.1 s post-bounce

Nuclear reactors Eν<10 MeV

Too cold

H.E. “accelerators” Eν >100 MeV

Too hot

Justright

Supernovaneutrinoobserva;ons•  Measurement of the neutrino energy

spectra and time distribution from a Galactic supernova would provide a wealth of information on the conditions in supernovae, neutrino oscillations, etc.

Bruenn et al. (2004)

NewgeneraRonofLargemassDarkma/erexperimentscouldbesensiRvetotheGalacRcSupernovae.

Needtounderstandsignalindetectors.LowenergyneutrinointeracRonareneverbeenmeasured!!!

!

SN

SNS

Conclusion

SNSistheworldmostpowerfulpulsedneutrinosource

NeutrinoEnergyrangeattheSNSisjustrightforthesearchofCEvNS

ThereiscomprehensiveandexciRngneutrinoprogramattheSNS

PresentlyCOHERENTcollaboraRonisengageindeploymentofthe

firstgeneraRonofdetectorstosee“FirstLight”

Therearemanyideasandforthewhattodoa{erthefirstobservaRonofSEvNS