NATURAL EMISSION: Mineral Dust Aerosols -...

Post on 26-Apr-2018

223 views 4 download

Transcript of NATURAL EMISSION: Mineral Dust Aerosols -...

NATURAL EMISSION: Mineral Dust Aerosols

Paul GinouxNOAA-GFDLPrinceton, NJ

������������� ����

��������������������

• Land-surface processes

• Dust emission modeling

• Evolution of global inventories and satellite instruments

• Present state of global inventories

•Future directions

Mineral Dust Aerosols: Physical Processes: Particle motions

������� ���!���"�#$���"����%

&' �����%��$$��(��"����!$��(��"���"�#$��)*�����+

�' ,�$"�"���%������(��"����!��� )��������+

�' ,���������%-�!"��(��"����!��$"�� #$�.)�'&�����+

�/���,�0����1�

,2,���,�1�

������������� ����

��������������������

Mineral Dust Aerosols: Physical Processes: Dust uplift

13���4�"�������-"��"%

&' ,�$"�"��(��� (������5#�4�"��4�� ������ ��#���#��"�����$����!���

���"�#$����!�#��)/�#��"�$'�&66��� &667+'�������"����!"��

��"����$ ���$�#� ���8�#"� ��"�"��!$�-'

�' 9��$ �� $�3���"��.�"� ������-"��" ��"#��#��"��"����������#� 3.

�� ����!��(��"� ���������#��!��$"�"���'�"���"��$"�"�������#"��

���!�#��! ��"���"�#$��������� �3$.�"�3$�):�(��$ �&6�&+'

�������������� ������������������������ ��������� �����

������� ���������������� �������������������

,�0����1�

������������� ����

��������������������

Mineral Dust Aerosols: Physical Processes: Sand blasting

���������.��#������!����$�!"��( ��"!���"�����!�#���

"����(���$"�"���3��3�� ���"3.��� ���"�#$��3�#����"��

� ������������������������� 3�"-��� ��"���"�#$�����"��

�"���("��$$�- ���#"����������''

,�$"�"����!���

,����������! ��"

:0�,����

0�!"3.��$"�"���

���4�".��"�����"�#$�!��#�

0�!"3.-�� �����

;��(

���4�".

���� .����#������"

������������� ����

��������������������

Mineral Dust Aerosols: Physical Processes: Saltation flux

����"����-������ !$�5!$�5<��(�4��3.:�(��$ )&6�&+%

+)+)=

=�

=

� �

��

����� Φ== �

∞ ρ9��#"���4�$�#�".

�������$ !��#"���4�$�#�".>�-����= ?�=">&-����=��="(���("���!".

@� �$��! ��"��������%

&+��$$�""��� �����)&6AA+%

�+ ,���)&66�+%�5�$�#�"$.�##���"�!��"���!!�#"��!���"�#$���B��

�+@��"�#������� :��(���""�)&66�+%�##���"!����� 3$��"��(3.�����$��

������#�-����

�+,���)����+%����$��4�������!,���)&66�+�� $�"��4�������

����������������������

���� ���

��� ��������� � δδ+)+)+)+�)� �=

Mineral Dust Aerosols: Physical Processes: Dust emission models

+) =

= ������ −=

+A�'&���A'�)+)�&'�

−= ����� ��

������������� ����

��������$.����������

������������� ����

��������������������

� � �������������������������������������������������������

0�3���"��.�� !��$ ����������"����-"��")���������&6A�C�������� ��� ������&66DC� ���� ����'�&666C���������C��� ����

� ���������C���� �� E +%

&' 2="�������$.F�� ��"�#!��#"����!���"�#$�� ����"��-�"��

�������!��;>&�"�&����

�' 2="��#��"��$$� �������$.3."��$�#�$���$���(�����B��

;��"����#��>3������!�#�����!����"��$$.!$�"��$� �3�

�' 1"��������"��"������"������%

&' �������"���%�=" �#������3.��G!������"��&�#

�����"��"!��0�@����$�"����

�' ,��$����"���%�=")@+>()@+�=") �.+-����(����������#�$

�5�����"��$!��#"��� ��$. �.���!�#�#�����" ��"

�' ����"��(3.��$"�%�=" ��3$�-�"�&G��#������!��$"#��"��"

��$. ��"��3� ���$�-��$ 3��5��#"� "�3�

��� �3$��������$-�� �"����

Q=C sp u*2(u*-u*t)

F=α <

The threshold velocity u*t is a function of particle radius, surface roughness height, temperature, and surface wetness

Vertical Flux of clay and silt

Horizontal flux of Sand

Mineral Dust Aerosols: Global models: Dust emission

@��"($�3�$ ��"�� �$������$$�""��� �����)&6AA+

!����$�"���-�"���!����"����!"�������"���$��B� ��"��3�"���

��#$� � ���������"���� ��"���!!�#���#.!�#"��α'

�!!�#���#.!�#"��

@��"�#������� :��(���""�)&66�+%+&��&)

&��−= �����

α

������������� ����

��������������������

Mineral Dust Aerosols: Global models: Input datasets

����" �"���"�!��($�3�$ ��"���������� �$�%

����������� ��%�= %($�3�$� ���4� !���-�� ���!�$���$�"��������

��������!����%G#$�.�G��$"�G��� %($�3�$ �"�)�'('9�1+

"�������������(����$���"�.%($�3�$ �"�)�'('9�1+

#����������� ������ ���%B��%��(����$)�'('��"�!��#�3.@��"�#�����+3�"��($�3�$ �"�

$������������ �%G��$"�G���1�%��($�3�$ �"�

%���������������ω�%$�� ���!�#��� �$�

:�#�������� �. �"���"�)�'('B��+���������(�""��

($�3�$�#�$��"�����"��$ ��"��3�"����! ��"����#����4�"�

3����#�!�� '����4�$�"����! ��"����#���4��"�������4�

#$���$.!�$$�-� "�����(�����!��"�$$�"����"�����"�'������������� ����

��������������������

Dust Source Inventories following Progress of Satellite Instruments

90S

60S

30S

0

30N

60N

90NDec. Jan. Feb.

1

90S

60S

30S

0

30N

60N

90NMar. Apr. May 1990

1

90S

60S

30S

0

30N

60N

90NJun. July Aug. 1990

1

180 120W 60W 0 60E 120E 180

90S

60S

30S

0

30N

60N

90NSep. Oct. Nov. 1990

1

0 050 .10 .15 .20 .25 .30 .35 .40 .50 .60

�HI//

�1@, @1;�,

Satellite Instruments for Sources study

• AVHRR (.63/.83µµµµm) 1984 Mishchenko/Geogdzhayev• (.63µµµµm) 1979 Stowe

• TOMS (.34/.38µµµµm) 1979 Torres/Herman/Bhartia

• MODIS (.44/.67/1.6/2.2µµµµm) 2000 Kaufman/Tanre/Remer/Chu

Instrument Limitations• AVHRR model, ocean-limited, calibration, clouds• TOMS model, height, spatial resolution (50km at nadir)• MODIS model, aerosol shape, limited land-coverage

������������� ����

��������������������

What can we learn from AVHRRs data?

90S

60S

30S 0

30N

60N

90NDec. Jan. Feb.

1

90S

60S

30S 0

30N

60N

90NMar. Apr. May 1990

1

90S

60S

30S 0

30N

60N

90NJun. July Aug. 1990

1

180 120W 60W 0 60E 120E 180

90S

60S

30S 0

30N

60N

90NSep. Oct. Nov. 1990

1

0 050 .10 .15 .20 .25 .30 .35 .40 .50 .60

• Long range transport of dust from African deserts to Caribbean and SE USA (Prospero and Carlson, 1972)

• Latitudinal variation of African plume over the Atlantic:

•minimum in January (5N)•Maximum in August (20N)

Dec-Feb

Mar-May

Jun-Aug

Sep-Nov ������������� ����

��������������������

Mineral Dust Aerosols: Global models: Natural dust sources (Tegen and Fung, 1994)

������������� ����

��������������������

9�1%G�$�.

@�""��-�H�(�"�"���#�4��

��(���� 9��()&66�+% ��"����#��>G�$�.�G,�$"

�4��-�� $.4�(�"�"� ���!�#��

���������$���!"���HI//

Mineral Dust Aerosols: Global models: Anthropogenic dust sources (Tegen and Fung, 1995)

:.� ��(��G��"�����(���#����#�����(���� 9��()&66�+

�� �$#��"��� �������$���!"�!�$������3���4� 3.�HI//

TOMS Aerosol Index (Herman et al., 1997)

J+)$�(+)K$�(&��

��

����� �!

!

!

!"!

λ

λ

λ

λ −−=

L�����"��-�4�$��("�)��&�������+

L��$��(��-�4�$��("�)�7����A���+

������������� ����

��������������������

Mineral Dust Aerosols: TOMS Aerosol Index

�""�%��"���'(�!#'����'(�4

Prospero, Ginoux, Torres, Nicholson, and Gill, Rev. Geophys., 40(1), 2002.

What can we learn from TOMS aerosol index?

The maxima of TOMS AI are persistently (over 20 years of observations) at the same locations (Prospero et al., RG, 2002).

������������� ����

��������������������

��(����4��3����)@�$�+

:� �$� ���������)��� +

���""�$���� )�������+

� ����0�3.�

Mineral Dust Aerosols: TOMS Aerosol Index

@��"�1@,����5����������#��"� -�"�"���(�����#

����������� �.$� ������4��3� �)���������"�$'�����+

Mineral Dust Aerosols: Global dust sources

�����5�"�$')���&+����#��3� "��

��"����#��3��� ��"���(����.

�� 4�(�"�"���)3������!�#�!���

�HI//&5& �(���+

&�&�

���

&�&�

��5

&�&�

��5

���

����

−−=

##

#

��

���

������������� ����

��������������������

�1��/���9;0�� �$��

M�/@����1,��I�@�2,

���.���4���$��(����$�� �$��

�������&���/1�1@'

GOCART Aerosol ModelSulfate, Dust, Black Carbon, Organic, Sea-salt

Chin et al. (2000); Ginoux et al. (2001); Chin et al. (2002)Global, 2x2.5, 21 levels

Source Function STopography & Vegetation

EmissionF=C.sp.S.u2.(u-ut)

TransportAdvection

Eddy DiffusionMoist Convection

RemovalGravitational Settling

Wet deposition (rainout/washout)Surface dry deposition

GEOS DASAssimilated Meteorology

Size distribution7 bins: 0.2-12 10-6m

1981-2002

Mineral Dust Aerosols: GOCART dust model

Mineral Dust Aerosols: Global dust emission

������������� ����

��������������������

�1��/������$($�3�$��������!���

&6A&"�&667)�����5 �"�$'�����+

�����$�"����1��/�-��"��);�9+

��������-�"���1�� �5)�����5 �"�$'�����+

Mineral Dust Aerosols: Other global dust inventories

�� ���� �������& '' (�����#���������#��"� -�"���$���

$� ���� ��"�����(���#����#�����$���"���&�G'

�)� ����������& ''"(�����������$�(�#�$������#�N

O�� ���"�$')����3+#���������-�"������5 �"�$')���&+

�� ��(���"�$')����+'

'

������������� ����

��������������������

*��� ������������� � �������� �����������

@���-�$ �� 0�� )����+%��"�����(���#����#��#��$ 3�����(���

��G��$"���(�"����#��"���"�������#��"� -�"�-�� !��#"���4�$�#�".

�����"�$$�-#$���#��#$������

The dust emission can be evaluated by calculating the TOMS AI, either by using radiative calculation (Ginoux et al., EMS, 2004); or by using an empirical formulation (Ginoux and Torres, JGR, 2003): Explicit function of physical quantities: plume altitude h, optical thickness τ,

ωωτω +J)+&)K �$�"! −+=

TOMS (331/360): a=0.65 b=4.25TOMS (340/380): a=1.25 b=5

For 0.75 < ω

Mineral Dust Aerosols: Validation using TOMS AI

�� ����%1�$. �"���"-��#�

�$$�-� ���#"#��������� ��$.��

($�3�$$.�4����.�����4�� ����"�PP

�����+��0�-�������"�4�".����

"�����!�#���� ���($��#�""����(

�$3� ���� �"�3����4� � '

What can we learn from MODIS 500m RGB?

:� �$� ��������� @����"����

��� ��"�$�����������#��"� -�"���������$$� ��

������������� ����

��������������������

Mineral Dust Aerosols: TOMS AI frequencies and ephemeral lakes

,�����������$$� ������#"�4��"������"'�1@,��#����$�

�"������-��#��������#"�4��3�"�!���-��"�"�����$�"����"��

!�"���#$���"�������!�����(����$�"� ���-���� "��� ���"�� -�.'

������������� ����

��������������������

@���##� ���$���

,��� ��"�$���������"����#��"� -�"���������$$� ����

������"�3��!��"�����(���#���(��%4���#$���� �.$� � ��"�

�5#����4�����(�"���'

Mineral Dust Aerosols: Anthropogenic sources

0��.����

��,�����

������������� ����

��������������������

• At the present state there are available:– three global inventories (G-2001; Z-2003; T-2004) which reproduce

essential global characteristics of dust observations (correct seasonal variations everywhere, concentrations within a factor 2, size distribution, AOT, etc.). These global inventories offer the advantage to by-pass complex physical models which needs highly variable surface soilcharacteristics;

– two high resolution inventories: Western Africa (B. Marticorena), and Australia and China (Y. Shao).

• The anthropogenic contribution to dust emission seems to be limited to about 10% but it is mostly a guess.

• With actual dust inventories, the most important parameter are the soil moisture, vegetation cover, ( and surface roughness for physical process models).

Present state

������������� ����

��������������������

• Comparison of source inventories using satellite data: TOMS AI is global, daily and 25 years. Could also be used for dust CTM inversion. OMI launch (July 2004) could be helpful because it will provide much better resolution than TOMS. On-going work of dust retrieval with 1.5 km vertical resolution globally and daily from AIRSsatellite instrument could be very helpful.

• Do we need to get better characterization of dust sources and include ephemeral lakes considering that it is a painstaking job using MODIS Terra or Aqua level1b data and will it be possible to understand why some are active and others not? Anyway, several groups are attempting it.

• Prospero and Lamb (2004) found a good correlation between Sahel drought index of previous year and dust concentration at Barbados over 40 years of data. What is the physical explanation? No one knows.

Future directions

������������� ����

��������������������

1. Bagnold, R. A., The physics of Blown Sand and Desert Dunes, Methuen&Co., Ltd., London, 1941.2. Fecan, F., Marticorena, B., and G. Bergametti, Parameterization of the increase of the aeolian erosion

threshold wind friction velocity due to soil moisture for arid or semi-arid areas, Annal. Geophysic., 17, 149-157, 1999.

3. Gillette, D. A., and R. Passi, Modeling dust emission caused by wind erosion, J. Geophys. Res., 93, 14233-14242, 1988.

4. Ginoux, P., Chin, M., Tegen, I., Prospero, J. M., Holben, B., Dubovik, O., and S-J. Lin, Sources and distributions of dust aerosols simulated with the GOCART model, J. Geophys. Res., 1006, 20555-20273, 2001.

5. Ginoux, P. and O. Torres, Empirical TOMS index for dust aerosol: Applications to model validation and source characetrization, J. Geophys. Res., 108(D17), 4534, doi:10.1029/2003JD003470, 2003.

6. Ginoux, P., Prospero, J. M., O. Torres, and M. Chin, Long-term simulation of global dust distribution with the GOCART model: correlation with North Atlantic Oscillation, Environmtal Modeling & Soft., 19, 113-128, 2004.

7. Herman, J. R., Bhartia, P. K., Torres, O., Hsu, C., Seftor, C., and E. Celarier, Global distribution of UV-absorbing aeorosols from NIMBUS-7/TOMS data, J. Geophys. Res., 102, 16911-16922, 1997.

8. Mahowald,N. and C. Luo, A less dusty future?, Geophys. Res. Letters, 30, no 17, 1903 doi:10.1029/2003GL017880,2003.

9. Marticorena, B, and G. Bergametti, Modeling the atmospheric dust cycle: 1. Design of a soil-derived dust emission scheme, J. Geophys. Res., 100(D8), 16414-16430, 1995.

10. Marticorena, B., Bergametti, G., Aumont, B., Callot, Y., N’Doume, C., and M. Legrand, Modelling the atmospheric dust cycle: 2. Simulation of Saharan dust sources, J. Geophys. Res., 102, 4387-4404, 1997.

11. McKenna-Neuman, Effects of temperature and humidity upon the entrainment of sedimentary particles by wind, Boundary Layer Meteorol., 108, 61-89, 2003.

12. Nickling, W.G.., The stabilizing role of bonding agents on the entrainment of sediment by wind, Sedimentology, 31, 111-118, 1984.

References

������������� ����

��������������������

13. Prospero, J. M. and T. N. Carlson, Vertical and areal distribution of Saharan dust over the western equatorial North Atlantic ocean, J. Geophys. Res., 77, 5255-5265, 1972.

14. Prospero, J. M., Ginoux, P., Torres, O.,Nicholson, S. E., and T. E. Gill, Environmental characetrization of global sources of atmospheric soil dust identified with the NIMBUS-7 TOMS absorbing aerosol product, Rev. Geophys., 40, 1-31, 2002.

15. Rice, M., Willetts, B., and I. McEwan,An experimental study of multiple grain-size ejecta produced by collisions of saltating grains with a flat bed, Sedimentology, 42, 695-706, 1995.

16. Rice, M., Willetts, B., and I. McEwan, Wind erosion of crusted soil sediments, Earth Surf. Process. Landform, 21, 279-293, 1996.

17. Shao, Y., Raupach, M. R., Findlater, P. A., The effect of saltation bombardment on the entrainment of dust by wind, J. Geophys. Res., 98(D7), 12719-12726, 1993.

18. Shao, Y., Physics and Modelling of Wind Erosion, Kluwer Academic Publishers, Dordrecht, 2000.19. Shao, Y., Simplification of a dust emission scheme and comparison with data, J. Geophys. Res., 109,

D10202, doi:10.1029/2003JD004372, 2004.20. Tegen, I. And I. Fung, Modeling of mineral dust in the atmosphere: Sources, transport, and optical

thickness, J. Geophys. Res., 99(D11), 22897-22914, 1994.21. Tegen, I., and I. Fung, Contribution to the atmospheric mineral aerosol load from land surface modification,

J. Geophys. Res., 100(D9), 18707-18726, 1995.22. Tegen, I., S. P. Harrison, K. E. Kohfeld, I. C. Prentice, M. C. Coe, and M. Heimann. The impact of

vegetation and preferential source areas on global dust aerosol: Results from a model study. J. Geophys. Res.,107, doi:10.1029/2001JD000963, 2002.

23. Zender, C. S., H. Bian, and D. Newman, Mineral Dust Entrainment and Deposition (DEAD) model: Description and 1990s dust climatology, J. Geophys. Res., 108(D14), 4416, doi:10.1029/2002JD002775, 2003a.

24. Zender, C. S., D. J. Newman and O. Torres, Spatial heteogeneity in aeolian erodibility: Uniform, topographic, geomorphic, and hydrologic hypotheses, J. Geophys. Res., 18, 4416, doi:10.1029/2002JD003039, 2003b.

������������� ����

��������������������

References