Multiple Random Variables -...

Post on 17-May-2020

12 views 0 download

Transcript of Multiple Random Variables -...

Multiple Random Variables

Joint Cumulative Distribution

Function

Let X and Y be two random variables. Their joint cumulative

distribution function is FXY

x, y( ) P X x Y y .

0 FXY

x, y( ) 1 , < x < , < y <

FXY

,( ) = FXY

x,( ) = FXY

, y( ) = 0

FXY

,( ) = 1

FXY

x, y( ) does not decrease if either x or y increases or both increase

FXY

, y( ) = FY

y( ) and FXY

x,( ) = FX

x( )

Joint cumulative distribution function for tossing two dice

Joint Cumulative Distribution

Function

Joint Probability Mass Function

Let X and Y be two discrete random variables.

Their joint probability mass function is

PXY

x, y( ) P X = x Y = y .

Their joint sample space is

SXY

= x, y( ) | PXY

x, y( ) > 0{ }.

PXY

x, y( )x S

Xy S

Y

= 1 , P A = PXY

x, y( )x ,y( ) A

PX

x( ) = PXY

x, y( )y S

Y

, PY

y( ) = PXY

x, y( )x S

X

E g x, y( ) = g x, y( )PXY

x, y( )x S

Xy S

Y

Joint Probability Mass Function

Let a random variable X have a PMF

PXY

x, y( ) =

0.8x( ) 0.7

y( )41.17

, 0 x < 5, 4 y < 2

0 , otherwise

Joint Probability Density

Function

fXY

x, y( ) =

2

x yF

XYx, y( )( ) , f

XYx, y( ) 0 , < x < , < y <

fXY

x, y( )dxdy = 1 , FXY

x, y( ) = fXY

,( )d

x

d

y

fX

x( ) = fXY

x, y( )dy and fY

y( ) = fXY

x, y( )dx

P X ,Y( ) R = fXY

x, y( )dxdyR

P x1< X x

2, y

1< Y y

2= f

XYx, y( )dx

x1

x2

dyy

1

y2

E g X ,Y( )( ) = g x, y( )fXY

x, y( )dxdy

The Unit Rectangle Function

rect t( ) =

1 , t < 1 / 2

1 / 2 , t = 1 / 2

0 , t > 1 / 2

= u t +1 / 2( ) u t 1 / 2( )

The product signal g(t)rect(t) can be thought of as the signal g(t)“turned on” at time t = -1/2 and “turned back off” at time t = +1/2.

Let

fXY

x, y( ) =1

wX

wY

rectx X

0

wX

recty Y

0

wY

E X( ) = x fXY

x, y( )dxdy = X0

E Y( ) = y fXY

x, y( )dxdy = Y0

E XY( ) = xy fXY

x, y( )dxdy = X0Y

0Correlation of X and Y

fX

x( ) = fXY

x, y( )dy =1

wX

rectx X

0

wX

Joint Probability Density

Function

For x < X0

wX

/ 2 or y < Y0

wY

/ 2, FXY

x, y( ) = 0

For x > X0

+ wX

/ 2 and y > Y0

+ wY

/ 2, FXY

x, y( ) = 1

For X0

wX

/ 2 < x < X0

+ wX

/ 2 and y > Y0

+ wY

/ 2,

FXY

x, y( ) =1

wX

wY

dudvX

0w

X/2

x

Y0

wY

/2

Y0+w

Y/2

=x X

0w

X/ 2( )

wX

For x > X0

+ wX

/ 2 and Y0

wY

/ 2 < y < Y0

+ wY

/ 2,

FXY

x, y( ) =1

wX

wY

dudvX

0w

X/2

X0+w

X/2

Y0

wY

/2

y

=y Y

0w

Y/ 2( )

wY

For X0

wX

/ 2 < x < X0

+ wX

/ 2 and Y0

wY

/ 2 < y < Y0

+ wY

/ 2,

FXY

x, y( ) =1

wX

wY

dudvX

0w

X/2

x

Y0

wY

/2

y

=x X

0w

X/ 2( )

wX

y Y0

wY

/ 2( )w

Y

Joint Probability Density

Function

Joint Probability Density

Function

Combinations of Two Random

VariablesExample

If the joint pdf of X and Y is fX

x, y( ) = ex u x( )e

y u y( )find the pdf of Z = X / Y . Since X and Y are never negative

Z is never negative.

FZ

z( ) = P Z z( ) = P X / Y z( ) F

Zz( ) = P X zY Y > 0 + P X zY Y < 0

Since Y is never negative

FZ

z( ) = P X zY Y > 0

FZ

z( ) = fXY

x, y( )dxdy

zy

= e xe ydxdy0

zy

0

, z 0

FZ

z( ) = 1 e zy( )e ydxdy0

=e

y z+1( )

z +1e y

0

=z

z +1 , z 0

fZ

z( ) =F

Zz( )

z=

1

z +1( )2

, z 0

0 , z < 0

fZ

z( ) =u z( )

z +1( )2

Combinations of Two Random

Variables

Combinations of Two Random

Variables

Example

The joint pdf of X and Y is defined as

fXY

x, y( ) =6x , x 0, y 0,x + y 1

0 , otherwise

Define Z = X Y . Find the pdf of Z.

Given the constraints on X and Y , 1 Z 1.

Z = X Y intersects X + Y = 1 at X =1+ Z

2 , Y =

1 Z

2.

Combinations of Two Random

Variables

For 0 z 1, FZ

z( ) = 1 6xdxy+ z

1 y

dy0

1 z( )/2

= 1 3x2

y+ z

1 y

dy0

1 z( )/2

FZ

z( ) = 13

41 z( ) 1 z2( ) f

Zz( ) =

3

41 z( ) 1+ 3z( )

Combinations of Two Random

Variables

For 1 z 0,

FZ

z( ) = 2 6xdx0

y+ z

dyz

1 z( )/2

= 6 x2

0

y+ z

dyz

1 z( )/2

= 6 y + z( )2

dyz

1 z( )/2

FZ

z( ) =1+ z( )

3

4f

Zz( ) =

3 1+ z( )2

4

Combinations of Two Random

Variables

Combinations of Two Random

Variables

Conditional Probability FX |A

x( ) =P X x( ) A

P A

Let A = Y y{ }

FX | Y y

x( ) =P X x Y y

P Y y=

FXY

x, y( )F

Yy( )

Let A = y1< Y y

2{ }

FX | y

1<Y y

2

x( ) =F

XYx, y

2( ) FXY

x, y1( )

FY

y2( ) F

Yy

1( )

Joint Probability Density

Function

Let A = Y = y{ }

FX | Y = y

x( ) = limy 0

FXY

x, y + y( ) FXY

x, y( )F

Yy + y( ) F

Yy( )

=y

FXY

x, y( )( )d

dyF

Yy( )( )

FX | Y = y

x( ) =y

FXY

x, y( )( )

fY

y( ) , f

X |Y = yx( ) =

xF

X | Y = yx( )( ) =

fXY

x, y( )f

Yy( )

Similarly, fY |X =x

y( ) =f

XYx, y( )

fX

x( )

Joint Probability Density

Function

In a simplified notation

fX |Y

x( ) =f

XYx, y( )

fY

y( )and f

Y |Xy( ) =

fXY

x, y( )f

Xx( )

Bayes’ Theorem

fX |Y

x( )fY

y( ) = fY |X

y( )fX

x( )Marginal pdf’s from joint or conditional pdf’s

fX

x( ) = fXY

x, y( )dy = fX |Y

x( )fY

y( )dy

fY

y( ) = fXY

x, y( )dx = fY |X

y( )fX

x( )dx

Joint Probability Density

Function

It can be shown that, analogous to pdf, the conditional joint

PMF of X and Y given Y = y is

PX |Y

x | y( ) =P

XYx, y( )

PY

y( )and P

Y |Xy | x( ) =

PXY

x, y( )P

Xx( )

Bayes’ Theorem

PX |Y

x | y( )PY

y( ) = PY |X

y | x( )PX

x( )Marginal PMF’s from joint or conditional PMF’s

PX

x( ) = PXY

x, y( )y S

Y

= PX |Y

x | y( )PY

y( )y S

Y

PY

y( ) = PXY

x, y( )x S

X

= PY |X

y | x( )PX

x( )x S

X

Joint Probability Mass Function

Independent Random Variables

If two continuous random variables X and Y are independent then

fX |Y

x( ) = fX

x( ) =f

XYx, y( )

fY

y( )and f

Y |Xy( ) = f

Yy( ) =

fXY

x, y( )f

Xx( )

.

Therefore fXY

x, y( ) = fX

x( )fY

y( ) and their correlation is the

product of their expected values

E XY( ) = xy fXY

x, y( )dxdy = y fY

y( )dy x fX

x( )dx

E XY( ) = E X( )E Y( )

Independent Random Variables

If two discrete random variables X and Y are independent then

PX |Y

x | y( ) = PX

x( ) =P

XYx, y( )

PY

y( )and P

Y |Xy | x( ) = P

Yy( ) =

PXY

x, y( )P

Xx( )

.

Therefore PXY

x, y( ) = PX

x( )PY

y( ) and their correlation is the

product of their expected values

E XY( ) = xy PXY

x, y( )x S

Xy S

Y

= y PY

y( )y S

Y

x PX

x( )x S

X

E XY( ) = E X( )E Y( )

Covariance

XYE X E X( ) Y E Y( )

*

= x E X( )( ) y* E Y *( )( )fXY

x, y( )dxdy

or = x E X( )( ) y* E Y *( )( )PXY

x, y( )x S

Xy S

Y

XY= E XY *( ) E X( )E Y *( )

If X and Y are independent,

XY= E X( )E Y *( ) E X( )E Y *( ) = 0

Independent Random Variables

Correlation Coefficient

XY= E

X E X( )

X

Y * E Y *( )Y

=x E X( )

X

y* E Y *( )Y

fXY

x, y( )dxdy

or =x E X( )

X

y* E Y *( )Y

PXY

x, y( )x S

Xy S

Y

XY=

E XY *( ) E X( )E Y *( )X Y

= XY

X Y

If X and Y are independent = 0. If they are perfectly positively

correlated = +1 and if they are perfectly negatively correlated

Independent Random Variables

If two random variables are independent, their covariance is

zero.

However, if two random variables have a zero covariance

that does not mean they are necessarily independent.

Independence Zero Covariance

Zero Covariance Independence

Independent Random Variables

In the traditional jargon of random variable analysis, two

“uncorrelated” random variables have a covariance of zero.

Unfortunately, this does not also imply that their correlation is

zero. If their correlation is zero they are said to be orthogonal.

X and Y are "Uncorrelated"XY

= 0

X and Y are "Uncorrelated" E XY( ) = 0

Independent Random Variables

Bivariate Gaussian Random

Variables

fXY

x, y( ) =

exp

x μX

X

22

XYx μ

X( ) y μY( )

X Y

+y μ

Y

Y

2

2 1XY

2( )

2X Y

1XY

2

Bivariate Gaussian Random

Variables

Bivariate Gaussian Random

Variables

Bivariate Gaussian Random

Variables

Any cross section of a bivariate Gaussian pdf at any value of x or y

is Gaussian. The marginal pdf’s of X and Y can be found using

fX

x( ) = fXY

x, y( )dy

which turns out to be

fX

x( ) =e

x μX( )

2/2

X2

X2

Similarly, fY

y( ) =e

y μY( )

2/2

Y2

Y2

Bivariate Gaussian Random

Variables

The conditional pdf of X given Y is

fX |Y

x( ) =

expx μ

X( ) XY X/

Y( ) y μY( )( )

2

2X

2 1XY

2( )

2X

1XY

2

The conditional pdf of Y given X is

fY |X

y( ) =

expy μ

Y( ) XY Y/

X( ) x μX( )( )

2

2Y

2 1XY

2( )

2Y

1XY

2

Bivariate Gaussian Random

Variables