Multilayer interference coatings - Peopleattwood/sxr2009/...Prof. David Attwood / UC Berkeley EE213...

Post on 13-Oct-2020

3 views 0 download

Transcript of Multilayer interference coatings - Peopleattwood/sxr2009/...Prof. David Attwood / UC Berkeley EE213...

1Prof. David Attwood / UC Berkeley EE213 & AST210 / Spring 2009 05_Multilayers_2009.ppt

Multilayer interference coatings

2Prof. David Attwood / UC Berkeley EE213 & AST210 / Spring 2009 05_Multilayers_2009.ppt

Scattering by density variations within a

multilayer coating

3Prof. David Attwood / UC Berkeley EE213 & AST210 / Spring 2009 05_Multilayers_2009.ppt

Scattering of radiation by a sinusoidal

density distribution (atoms or electrons)

4Prof. David Attwood / UC Berkeley EE213 & AST210 / Spring 2009 05_Multilayers_2009.ppt

Scattering from density variations

5Prof. David Attwood / UC Berkeley EE213 & AST210 / Spring 2009 05_Multilayers_2009.ppt

Multilayer mirrors satisfy the Bragg condition

6Prof. David Attwood / UC Berkeley EE213 & AST210 / Spring 2009 05_Multilayers_2009.ppt

An angular scan of a multilayer mirror performs a

Fourier-transform of the density profile

7Prof. David Attwood / UC Berkeley EE213 & AST210 / Spring 2009 05_Multilayers_2009.ppt

Multilayer mirrors satisfy the Bragg condition

8Prof. David Attwood / UC Berkeley EE213 & AST210 / Spring 2009 05_Multilayers_2009.ppt

High reflectivity multilayer coatings require

• Refractive index contrast at the interfaces

• Minimal absorption in the low-Z material

• Thin high-Z layer where possible ! ! "#H /("#H + "#L)

• Interfaces which are chemically stable with time

• Minimal interdiffusion at the interfaces

• Minimal interfacial roughness (no crystallite formation

within the layers, no shadowing in the coating process,

surface mobility)

• Thermal stability during illumination

• Chemically stable vacuum interface(e.g., Si02 or capping

layer)

• Uniform coating thickness

9Prof. David Attwood / UC Berkeley EE213 & AST210 / Spring 2009 05_Multilayers_2009.ppt

Computed reflectivity of a W/C x-ray multilayer mirror

10Prof. David Attwood / UC Berkeley EE213 & AST210 / Spring 2009 05_Multilayers_2009.ppt

High order reflections from a multilayer coating

11Prof. David Attwood / UC Berkeley EE213 & AST210 / Spring 2009 05_Multilayers_2009.ppt

Multilayer interface mirrors computational model

www.cxro.LBL.gov

12Prof. David Attwood / UC Berkeley EE213 & AST210 / Spring 2009 05_Multilayers_2009.ppt

Atomic scattering factors for Silicon (Z = 14)

13Prof. David Attwood / UC Berkeley EE213 & AST210 / Spring 2009 05_Multilayers_2009.ppt

Atomic scattering factors for Molybdenum

(Z = 42)

14Prof. David Attwood / UC Berkeley EE213 & AST210 / Spring 2009 05_Multilayers_2009.ppt

Optimized reflectivity with thin “high-Z” layers

15Prof. David Attwood / UC Berkeley EE213 & AST210 / Spring 2009 05_Multilayers_2009.ppt

A high quality Mo/Si multilayer mirror

16Prof. David Attwood / UC Berkeley EE213 & AST210 / Spring 2009 05_Multilayers_2009.ppt

Mo/Si multilayer interference coating

Molybdenum as the “scattering layer”

Silicon as the non-absorbing “spacing layer”

Actually an exaggeration, the complex

refractive index

of each material plays a role in the reflection

process

The absorption edge Si-L3 = 99.2 eV

(12.5 nm)

Higher photon energies are absorbed in Si,

lower photon energies (longer wavelengths)

are not.

Typically $ = 13.4 nm or more.

Molybdenum has relatively good scattering

properties in this

photon energy (wavelength) region, with

limited absorption.

17Prof. David Attwood / UC Berkeley EE213 & AST210 / Spring 2009 05_Multilayers_2009.ppt

High reflectivity, thermally and environmentally robust

multilayer coating for high throughput EUV lithography

18Prof. David Attwood / UC Berkeley EE213 & AST210 / Spring 2009 05_Multilayers_2009.ppt

Multilayer mirrors have achieved a reflectivity of 70%

19Prof. David Attwood / UC Berkeley EE213 & AST210 / Spring 2009 05_Multilayers_2009.ppt

Recent progress in multilayer mirrors

20Prof. David Attwood / UC Berkeley EE213 & AST210 / Spring 2009 05_Multilayers_2009.ppt

Sputtered deposition of a multilayer coating

21Prof. David Attwood / UC Berkeley EE213 & AST210 / Spring 2009 05_Multilayers_2009.ppt

DC magnetron sputtering is used to reliably deposit multilayer

coatings of predictable center wavelength and excellent uniformity

22Prof. David Attwood / UC Berkeley EE213 & AST210 / Spring 2009 05_Multilayers_2009.ppt

Buried, trace amounts of iron in a defective

silicon solar cell

23Prof. David Attwood / UC Berkeley EE213 & AST210 / Spring 2009 05_Multilayers_2009.ppt

Microprobe analysis of contaminated soil

24Prof. David Attwood / UC Berkeley EE213 & AST210 / Spring 2009 05_Multilayers_2009.ppt

Polarization studies of magnetic materials

25Prof. David Attwood / UC Berkeley EE213 & AST210 / Spring 2009 05_Multilayers_2009.ppt

Photoemission microscopy for surface science and

characterization

26Prof. David Attwood / UC Berkeley EE213 & AST210 / Spring 2009 05_Multilayers_2009.ppt

Photoemission spectroscopy reveals characteristic

electron binding energies

27Prof. David Attwood / UC Berkeley EE213 & AST210 / Spring 2009 05_Multilayers_2009.ppt

Photoemission spectroscopy as a tool

for surface science

28Prof. David Attwood / UC Berkeley EE213 & AST210 / Spring 2009 05_Multilayers_2009.ppt

Observation of varied chemical states by

photoemission spectromicroscopy

29Prof. David Attwood / UC Berkeley EE213 & AST210 / Spring 2009 05_Multilayers_2009.ppt

Photoemission microscopy of a AIGaN film – “Monet”

30Prof. David Attwood / UC Berkeley EE213 & AST210 / Spring 2009 05_Multilayers_2009.ppt

High resolution x-ray diffraction under high

pressure using multilayer coated focusing optics

31Prof. David Attwood / UC Berkeley EE213 & AST210 / Spring 2009 05_Multilayers_2009.ppt

32Prof. David Attwood / UC Berkeley EE213 & AST210 / Spring 2009 05_Multilayers_2009.ppt

The Cassegrain telescope

33Prof. David Attwood / UC Berkeley EE213 & AST210 / Spring 2009 05_Multilayers_2009.ppt

Extreme ultraviolet astronomy

34Prof. David Attwood / UC Berkeley EE213 & AST210 / Spring 2009 05_Multilayers_2009.ppt

EUV image of the solar corona showing loops near the

solar limb

35Prof. David Attwood / UC Berkeley EE213 & AST210 / Spring 2009 05_Multilayers_2009.ppt

Dynamics of the solar corona

36Prof. David Attwood / UC Berkeley EE213 & AST210 / Spring 2009 05_Multilayers_2009.ppt

37Prof. David Attwood / UC Berkeley EE213 & AST210 / Spring 2009 05_Multilayers_2009.ppt

38Prof. David Attwood / UC Berkeley EE213 & AST210 / Spring 2009 05_Multilayers_2009.ppt

39Prof. David Attwood / UC Berkeley EE213 & AST210 / Spring 2009 05_Multilayers_2009.ppt

Extreme ultraviolet (EUV) lithography

40Prof. David Attwood / UC Berkeley EE213 & AST210 / Spring 2009 05_Multilayers_2009.ppt

Smooth multilayer coatings are required to minimize

wavefront errors in EUV optical systems

41Prof. David Attwood / UC Berkeley EE213 & AST210 / Spring 2009 05_Multilayers_2009.ppt

Multilayer coatings for the ETS projection optics

approach production specifications

Systematic d-space variations suggest path to further improvements.

(Courtesy of R. Soufli and E. Spiller, LLNL)

42Prof. David Attwood / UC Berkeley EE213 & AST210 / Spring 2009 05_Multilayers_2009.ppt