MTH 065 Elementary Algebra II Chapter 11 Quadratic Functions and Equations Section 11.1 Quadratic...

Post on 17-Dec-2015

223 views 1 download

Transcript of MTH 065 Elementary Algebra II Chapter 11 Quadratic Functions and Equations Section 11.1 Quadratic...

42510011 0010 1010 1101 0001 0100 1011

MTH 065Elementary Algebra II

Chapter 11

Quadratic Functions and Equations

Section 11.1

Quadratic Equations

4251

0011 0010 1010 1101 0001 0100 1011

Geometric Representation ofCompleting the Square

x

x + 8Area = x(x + 8)

4251

0011 0010 1010 1101 0001 0100 1011

Geometric Representation ofCompleting the Square

x

x 8

x2 8x

Area = x2 + 8x

4251

0011 0010 1010 1101 0001 0100 1011

Geometric Representation ofCompleting the Square

x

x 8

x2 8x

Area = x2 + 8x

4251

0011 0010 1010 1101 0001 0100 1011

Geometric Representation ofCompleting the Square

x

x 4

x2 8x

4Area = x2 + 8x

4251

0011 0010 1010 1101 0001 0100 1011

Geometric Representation ofCompleting the Square

x

x 4

x2 4x

4

4x

Area = x2 + 8x

4251

0011 0010 1010 1101 0001 0100 1011

Geometric Representation ofCompleting the Square

x

x 4

x2 4x

4

4x

Area = x2 + 8x

4251

0011 0010 1010 1101 0001 0100 1011

Geometric Representation ofCompleting the Square

x

x 4

x2 4x

4 4x

Area = x2 + 8x

4251

0011 0010 1010 1101 0001 0100 1011

Geometric Representation ofCompleting the Square

x

x 4

x2 4x

4 4x ?

Area = x2 + 8x + ?

4251

0011 0010 1010 1101 0001 0100 1011

Geometric Representation ofCompleting the Square

x

x 4

x2 4x

4 4x 16

Area = x2 + 8x + 16

4251

0011 0010 1010 1101 0001 0100 1011

Geometric Representation ofCompleting the Square

x

x 4

x2 4x

4 4x 16

Area = x2 + 8x + 16 = (x + 4)2

4251

0011 0010 1010 1101 0001 0100 1011

Terminology

• Quadratic EquationAny equation equivalent to an equation with the form …

ax2 + bx + c = 0… where a, b, & c are constants and a ≠ 0.

• Quadratic FunctionAny function equivalent to the form …

f(x) = ax2 + bx + c... where a, b, & c are constants and a ≠ 0.

4251

0011 0010 1010 1101 0001 0100 1011

Review Results from Chapter 6

• Solve quadratic equations by graphing.• Put into standard form: ax2 + bx + c = 0• Graph the function: f(x) = ax2 + bx + c• Solutions are the x-intercepts.• # of Solutions? 0, 1, or 2

Details of Graphs of Quadratic Functions – Section 11.6

4251

0011 0010 1010 1101 0001 0100 1011

Review Results from Chapter 6

• Solve quadratic equations by factoring.• Put into standard form: ax2 + bx + c = 0• Factor the quadratic: (rx + m)(sx + n) = 0• Set each factor equal to zero and solve.• # of Solutions?

• 0 does not factor (not factorable no solution)

• 1 factors as a perfect square (if it factors)

• 2 two different factors (if it factors)

4251

0011 0010 1010 1101 0001 0100 1011

Principle of Square Roots

For any number k, if …

… then …

2x k

, x k k

4251

0011 0010 1010 1101 0001 0100 1011

Principle of Square Roots

For any number k, if …

… then …2x k x k

Why? Consider the following example …

x2 = 9 x2 – 9 = 0 (x – 3)(x + 3) = 0 x = 3, –3

4251

0011 0010 1010 1101 0001 0100 1011

Application of thePrinciple of Square Roots

Solve the equation …

3x

2 3x

25 15x

25 15 0x NoteThis example demonstrates how to solve a quadratic equation with no linear (bx) term.

4251

0011 0010 1010 1101 0001 0100 1011

Application of thePrinciple of Square Roots

Solve the equation …

2 3x

25 15x

25 15 0x

3 3x i

Note

Remember to always simplify radicals.

• no perfect squares• no multiples of perfect

squares• no negatives

4251

0011 0010 1010 1101 0001 0100 1011

Application of thePrinciple of Square Roots

Solve the equations …

3 2x

3 2x

2( 3) 4x

5, 1x

5 7x

5 7x

2( 5) 7x

4251

0011 0010 1010 1101 0001 0100 1011

Application of thePrinciple of Square Roots

Solve the equation …

2 8 5 0x x

2 8 16 11x x

But this does not factor …

2( 4) 11x

4 11x

4 11x

4251

0011 0010 1010 1101 0001 0100 1011

Solving by“Completing the Square”

2 6 7 0x x Note: This polynomial does not factor.

2 6 7x x 22 36 7 9x x 2( 23)x

3 2x

3 2x

4251

0011 0010 1010 1101 0001 0100 1011

Solving ax2 + bx + c = 0 by“Completing the Square”

• Basic Steps …

1. Get into the form: ax2 + bx = d

2. Divide through by a giving: x2 + mx = n

3. Add the square of half of m to both sides.

• i.e. add

4. Factor the left side (a perfect square).

5. Solve using the Principle of Square Roots.

2

2

m