Modeling the Transport of Larval Yellow Perch in Lake ...

Post on 14-Mar-2022

3 views 0 download

Transcript of Modeling the Transport of Larval Yellow Perch in Lake ...

MDW

ORD

SBN

MKG

TVC

GRB

MKE

45002

45007

SGNW3

BEH

BIV

CGX

ENW

ESC

MNN

MTW

PWK

Figure 1. Numerical grid, bathymetry (isobaths every 50 m), and meteorological stations. Initial particles location in southern Lake Michigan is also shown.

Conclusions• Firstphysical-biologicalmodelforlarvalfishintheGreatLakeswasbuilt.•Modelresultsshowsignificantinterannualvariabilityinlarvaltransportandgrowth.•ModelresultsareconsistentwithmanyrecentobservationsinLakeMichigan.• Physicalmodelresultscanbeusedforotherlarvalfishmodelingin1998-2003.

Modeling the Transport of Larval Yellow Perch in Lake Michigan

Objectives• SimulatelarvalyellowperchtransportinLakeMichiganusing3Dcirculationmodelresults.

•Developcoupledbiophysicalmodeltopredictlarvaltransport,larvalgrowth,settlementandsurvivalin6years(1998-2003).

• Explaininter-annualvariabilityinlarvalsurvivalandrecruitmentduetotemperatureandlake-widecirculation.

ApproachHydrodynamic Model- Princeton Ocean Model (Blumberg and Mellor, 1987)• Fully3DnonlinearNavier-Stokesequations• Freeuppersurfacewithbarotropic(external)mode• Baroclinic(internal)mode•Mellor-Yamadaturbulencemodelforverticalmixing• Terrainfollowingverticalcoordinate(sigma-coordinate)

A3-dimensionalcirculationmodelofLakeMichigan(Beletskyetal.,2006)isusedtocalculatelakecirculationona2kmgrid(Figure1).

Particle Trajectory Model• 3DmodelisbasedonthePOMsubroutineTRACE(byJ.Berntsen).• Particlesarepassiveandneutrallybuoyant.

Individual Based Perch Growth ModelGrowth=Consumption-Losses(Losses=Respiration,Egestion,Excretion)

•Determineslengthoftimelarvaecandriftuntilsettlementat30-50mm.• Consumptionisafunctionoftemperature,larvalweightandzooplanktonpreydensity.

• Preydensitiesareconstantintimeandspace(notenoughinformationonspatialandtemporalvariability).

•Nomortality.

ResultsPhysicsMonthlyaveragesurfacetemperaturepatternsforeachsummerin1998-2000arepresentedinFigure2a.Thereisageneralnorth-southtemperaturegradientseeninallmonthsinallyears.Anotherprominentfeatureoflaketemperaturepatternsisawind-drivenupwellingatthewestcoasttypicalofsummerconditionsinLakeMichigan(BeletskyandSchwab,2001).InsouthernLakeMichigan,surfacetemperaturesteadilyincreasedfromabout17oCinJuneto22oCinJulyto23oCinAugustofboth1998and1999.Inallsummermonthsof2000lakesurfacetemperaturewasabout1-2oClowerwhichshouldhaveimportantimplicationsonlarvalgrowthaswillbeshowninthenextsection.ModelresultswereevaluatedwithsurfacetemperatureobservationsatNOAAbuoys45002and45007,andlake-widesatellitetemperatureobservations(Figure2b).

ThecirculationpatterninsouthernLakeMichiganoftenconsistedoftwogyreswiththecyclonicgyreconfinedtothedeepareaandtheanticyclonicgyreintheshallowsouthernmostarea(Figure3).Duringsomemonths(August1998,JuneandAugust2000),astrongnorthwardcurrentfromsouthernLakeMichiganpenetratedthenorthernbasinwithsignificantimplicationsforlarvaltransport.Thespeedofmeansurfacecurrentsvariedfrom10to20cm/s.

Intheparticletrajectorymodel,246particleswerereleasednorthofChicago(Figure1)atbathymetricdepthsoflessthan10m.Particlesweredistributeduniformlywithdepth:nearthesurface,at1/3andat2/3ofagridcell’sdepth.ParticlemodelrunsbeganonJunefirstofeachyear(1998,1999,and2000)andendedintheendofAugust.ParticlelocationsattheendofeachmonthareshowninFigure4.Becauseallparticleswerereleasedinveryshallowwaterstheyhaveatendencytostayrelativelyclosetothesurface(0-20m).Overall,particlemovementmatchesthemonthlymeansurfacecurrentpatternratherwell:particlesinitiallymoveoffshoreandthencontinuetocirculateinsouthernLakeMichiganinananticyclonicfashion.Undercertainconditions(likeacaseofaparticularlystrongnorthwardcoastalcurrentinAugust1998)asignificantnumberofparticlesescapethesouthernbasinandpenetratethenorthernbasinofLakeMichigan.TheproximityofparticlestoshoreattheendofthemodelruninAugustcanalsobecriticalforlarvalsurvival.Larvaeaboutthistimebegintometamorphoseintotheiradultcharacteristicsandmoveintoadulthabitat,whichisnearbottomandnearshore.Asmodelresultsshow,in1998thenumberofparticlesreachingnearshorewatersinAugustwassignificantlyhigherthanin1999and2000whichmayprovideasignificantadvantageforsurival.

BiologyAlllarvaewereassumedtohaveinitiallengthof6mmathatching.Movementandgrowthoflarvaeinthemodelwerefollowedfromhatchingto30-50mm,thelengthatwhichtheysettleandbecomedemersal;larvaemetamorphoseintojuvenilesat20mm,andby30mmtakeonthecharacteristicsofadultfish.Growthratesandtimetosettlementwerepredictedassumingtwodifferentfoodavailabilityscenarios.Thiswasdonebymultiplyingmaximumconsumptionby1.0(Scenario1)and0.5(Scenario2).Inallbiologicalmodelrunsweassumedthatthereisnospatialgradientinfood(zooplankton)availableforlarvalyellowperch.Locationsoflarvaewhichreached30mmlengthunderthemaximumconsumptionconditions(Scenario1)areshowninFigure5.Nolarvaereached30mmbeforetheendofthefirstmonthexceptasmallnumberin1999.Onthecontrary,alllarvaereached30mmbytheendofthesecondmonthandthereforeJulyandAugustlocationsmatchexactlythoseofFigure4.Incaseofthereducedconsumptionscenario2(moretypicalofrealisticLakeMichiganconditions)thesituationchangesdramatically.Asexpected,nolarvaereached30mmbytheendofJunebutbytheendofJulyonlyafewlarvaereached30mmin2000whilein1998and1999morethan60%oflarvaegrewtotheirsettlementlength(Figure6).Thisisundoubtedlytheresultofmuchcoolerwatertemperaturesin2000predictedbythehydrodynamicmodelandconfirmedbysurfacetemperatureobservationsattheNDBCbuoy45007.Biophysicalmodelperformancewasevaluatedbycomparingmodelresultswithindependentobservationsofage-0yellowperchabundancefrom1998to2003(Beletskyetal.,2007).

14

1415

16

16

16

17

18

Jun, 1998

05

10

15

20

2530

1818

1818

19

19

20

20

21

2223

Jul, 1998

05

10

15

20

2530

18

20

20

21

21

22

23

Aug, 1998

05

10

15

20

2530

13

14

14

14

1516

16

17

18

Jun, 1999

05

10

15

20

2530

161718

19

20

20

20

21

22 23

Jul, 1999

05

10

15

20

2530

18

19

19

20

20

2121

22 23

Aug, 1999

05

10

15

20

2530

1112

13

13

14

14

14

15

15

16

Jun, 2000

05

10

15

20

2530

17

17

18 18

18

19

2021

Jul, 2000

05

10

15

20

2530

17

18

19

19

20

20

20

21

22

Aug, 2000

05

10

15

20

2530

45002

100 150 200 250 3001998

0

5

10

15

20

25

Tem

pera

ture

(C)

45002

100 150 200 250 3001999

0

5

10

15

20

25

Tem

pera

ture

(C)

45002

100 150 200 250 3002000

0

5

10

15

20

25

Tem

pera

ture

(C)

45002

100 150 200 250 3002001

0

5

10

15

20

25

Tem

pera

ture

(C)

45002

100 150 200 250 3002002

0

5

10

15

20

25

Tem

pera

ture

(C)

45002

100 150 200 250 3002003

0

5

10

15

20

25

Tem

pera

ture

(C)

45007

100 150 200 250 3001998

0

5

10

15

20

25

Tem

pera

ture

(C)

45007

100 150 200 250 3001999

0

5

10

15

20

25

Tem

pera

ture

(C)

45007

100 150 200 250 3002000

0

5

10

15

20

25

Tem

pera

ture

(C)

45007

100 150 200 250 3002001

0

5

10

15

20

25

Tem

pera

ture

(C)

45007

100 150 200 250 3002002

0

5

10

15

20

25

Tem

pera

ture

(C)

45007

100 150 200 250 3002003

0

5

10

15

20

25

Tem

pera

ture

(C)

Lake average

100 150 200 250 3001998

0

5

10

15

20

25

Lake average

100 150 200 250 3001999

0

5

10

15

20

25

Lake average

100 150 200 250 3002000

0

5

10

15

20

25

Lake average

100 150 200 250 3002001

0

5

10

15

20

25

Lake average

100 150 200 250 3002002

0

5

10

15

20

25

Lake average

100 150 200 250 3002003

0

5

10

15

20

25

plotted with eegle_buoys2.pro

Figure 2a. Modeled lake surface temperature in 1998-2000.

Figure 2b. Modeled (black) versus observed (red) lake surface temperature at 45002, 45007 and lake-averaged in 1998-2003.

Jun, 1998

10 cm/s

Jul, 1998

10 cm/s

Aug, 1998

10 cm/s

Jun, 1999

10 cm/s

Jul, 1999

10 cm/s

Aug, 1999

10 cm/s

Jun, 2000

10 cm/s

Jul, 2000

10 cm/s

Aug, 2000

10 cm/s

Figure 3. Surface currents in 1998-2000.

6/30/1998Day = 181

7/30/1998Day = 211

8/29/1998Day = 241

8/29/1999Day = 241

7/30/1999Day = 211

6/30/1999Day = 181

6/29/2000Day = 181

7/29/2000Day = 211

8/28/2000Day = 241

Figure 4. Particle transport in 1998-2000, total number of particles shown.

6/30/1998Day = 181

7/30/1998Day = 211

8/29/1998Day = 241

8/29/1999Day = 241

7/30/1999Day = 211

6/30/1999Day = 181

6/29/2000Day = 181

7/29/2000Day = 211

8/28/2000Day = 241

Figure 5. Larval transport and growth, Scenario 1 (see explanation in text). Total number of larvae reached 30 mm also shown.

Figure 6. Larval transport and growth, Scenario 2 (see explanation in text). Total number of larvae reached 30 mm also shown.

6/30/1998Day = 181

7/30/1998Day = 211

8/29/1998Day = 241

8/29/1999Day = 241

7/30/1999Day = 211

6/30/1999Day = 181

6/29/2000Day = 181

7/29/2000Day = 211

8/28/2000Day = 241

Problem StatementYellowperch(Percaflavescens)isecologicallyandeconomicallyimportantspeciesinLakeMichiganthathassufferedrecruitmentfailuresoverthelastdecade(Francisetal.,1996).Causesforpoorrecruitmentarenotunderstood,butarebelievedtobearesultofhighmortalityduringthelarvalstage.ThegoalofthisprojectistobeginexploringtheeffectsofphysicalfactorsonrecruitmentvariabilityofimportantLakeMichiganfishesinordertogaininsightintothedeclineintheyellowperchpopulationsandfactorscausingpoorrecruitment.Inthisproject,weapplyamodel-basedLangrangianapproachthatutilizes3-Dcirculationandthermalprocesses,physiologyandecologyoffishlarvae,andtrophodynamicsforunderstandingrecruitmentdynamicsinLakeMichiganspecifically,andtheotherGreatLakesingeneral.IntheinitialsetofnumericalexperimentswefocusonthetransportoflarvalyellowperchhatchedintheareainsouthernLakeMichiganknownforhighconcentrationsofrockyhabitatpreferredbyyellowperchspawners(Figure1).

Dmitry Beletsky1, David Schwab2, Doran Mason2, Edward Rutherford2, Michael McCormick2, Henry Vanderploeg2, John Janssen3, David Clapp4, and John Dettmers5 1Cooperative Institute for Limnology and Ecosytems Research, Ann Arbor, MI, 2NOAA, Great Lakes Environmental Research Laboratory, Ann Arbor, MI,

3Great Lakes Water Institute, Univ. of Wisconsin-Milwaukee, 4Michigan DNR, Charlevoix, MI, 5Lake Michigan Biological Station, Zion, IL

NATI

ON

AL O

CEANIC AND ATMOSPHERIC ADM

INISTRATIO

N

U.S.DEPARTMENT OF COMMERCE

Cooperative Institute for Limnologyand Ecosystems Research

CILER