MIT OpenCourseWare 6.013/ESD.013J Electromagnetics and...

Post on 10-Jan-2020

3 views 0 download

Transcript of MIT OpenCourseWare 6.013/ESD.013J Electromagnetics and...

MIT OpenCourseWare http://ocw.mit.edu 6.013/ESD.013J Electromagnetics and Applications, Fall 2005 Please use the following citation format:

Markus Zahn, 6.013/ESD.013J Electromagnetics and Applications, Fall 2005. (Massachusetts Institute of Technology: MIT OpenCourseWare). http://ocw.mit.edu (accessed MM DD, YYYY). License: Creative Commons Attribution-Noncommercial-Share Alike.

Note: Please use the actual date you accessed this material in your citation. For more information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms

6.013, Electromagnetic Fields, Forces, and Motion Lectures 6 & 7Prof. Markus Zahn Page 1 of 40

6.013, Electromagnetics and ApplicationsProf. Markus Zahn

September 27 and 29, 2005Lectures 6 and 7: Polarization, Conduction, and Magnetization

I. Experimental Observation: Dielectric Media

A. Fixed Voltage - Switch Closed ov = V

As an insulating material enters a free-space capacitor at constant voltagemore charge flows onto the electrodes; i.e., as x increases, i increases.

B. Fixed Charge - Switch open (i=0)

As an insulating material enters a free space capacitor at constant charge,the voltage decreases; i.e., as x increases, v decreases.

II. Dipole Model of Polarization

A. Polarization Vector P Np N q d ( p q d dipole moment)

N dipoles/Volume (P is dipole density) d q

q

6.013, Electromagnetic Fields, Forces, and Motion Lectures 6 & 7Prof. Markus Zahn Page 2 of 40

Courtesy of Krieger Publishing. Used with permission.

inside V pS V

Q = qN d da dV

paired charge or equivalentlypolarization charge density

6.013, Electromagnetic FProf. Markus Zahn

inside V PS V V

Q = P da P dV dV (Divergence Theorem)

P = qN d Np

PP

B. Gauss’ Law

o total u P uE P

o E

oD E

uD

C. Boundary

Unpaired chargedensity; alsocalled free charge

ields, Forces, and Motion Lectures 6 & 7Page 3 of 40

uP

P Displacement Flux Density

Conditions

density

6.013, Electromagnetic Fields, Forces, and Motion Lectures 6 & 7Prof. Markus Zahn Page 4 of 40

a bu u suS V

D = D da = dV n D D

a bP P spS V

P = P da = dV n P P

a bo u P o u P o su spS V

E E da dV n E E =

D. Polarization Current Density

Q qN dV qN d da P da [Amount of Charge passing through

surface area element da ]

p

Q Pdi da

t t[Current passing through surface

area element da]

pJ da

polarization current density

pP

Jt

Ampere’s law:

u p oEx H J Jt

u oP EJt t

u oJ E Pt

u 0DJ ; D E Pt

6.013, Electromagnetic Fields, Forces, and Motion Lectures 6 & 7Prof. Markus Zahn Page 5 of 40

III. Equipotential Sphere in a Uniform Electric Field

o o orlim r, E r cos E z E r cos

r R, 0

3

o 2

Rr, E r cos

r

This solution is composed of the superposition of a uniform electric fieldplus the field due to a point electric dipole at the center of the sphere:

dipole 2o

p cos4 r

with 3o op 4 E R

This dipole is due to the surface charge distribution on the sphere.

3

s o r o o o 3r R r R

2Rr R, E r R, E 1 cos

r r

o o3 E cos

6.013, Electromagnetic Fields, Forces, and Motion Lectures 6 & 7Prof. Markus Zahn Page 6 of 40

IV. Artificial Dielectric

sv v

E , Ed d

sA

q A vd

q A

Cv d

Courtesy of Hermann A. Haus and James R. Melcher. Used with permission.

For spherical array of non-interacting spheres (s >> R)

z

_3 3

o o z z o oP = 4 R E i P = N p = 4 R E N

31N = s

3 3

o e o e

R RP = 4 E = E = 4

s s

e (electric susceptibility)

o o eD = E P = 1 E = E

r(relative dielectric constant)

3

r o o e o

R= = 1 = 1 4

s

V. Demonstration: Artificial Dielectric

6.013, Electromagnetic Fields, Forces, and Motion Lectures 6 & 7Prof. Markus Zahn Page 7 of 40

Courtesy of Hermann A. Haus and James R. Melcher. Used with permission.

6.013, Electromagnetic Fields, Forces, and Motion Lectures 6 & 7Prof. Markus Zahn Page 8 of 40

Courtesy of Hermann A. Haus and James R. Melcher. Used with permission.

s

v vE = = E =

d d

s

A q Aq = A = v C = =

d v d

o

s

vi = C V =

R

3o

o

A R AC = = 4

d s d

R=1.87 cm, s=8 cm, A= (0.4)2 m2, d=0.15m

=2(250 Hz), Rs=100 k , V=566 volts peak

C=1.5 pf

0 sv = C R V

6.013, Electromagnetic Fields, Forces, and Motion Lectures 6 & 7Prof. Markus Zahn Page 9 of 40

=(2) (250) (1.5 x 10-12) (105) 566 = 0.135 volts

VI. Plasma Conduction Model (Classical)

pdvm = q E m v

dt n

pdvm = q E m v

dt n

p = n kT , p = n kT

k=1.38 x 10-23 joules/oK Boltzmann Constant

A. London Model of Superconductivity [ T 0 , 0 ]

dv dvm = q E , m = q Edt dt

J = q n v , J = q n v

2q E q ndJ d dvq n v = q n = q n = E

dt dt dt m m

2p

2q E q ndJ d dv= q n v = q n = q n = E

dt dt dt m m

2p

2 22 2p p

q n q n= , =

m m(p = plasma frequency)

For electrons: q-=1.6 x 10-19 Coulombs, m-=9.1 x 10-31 kg

n-=1020/m3 , 12o 8.854 x10 farads/m

211

p

q n= 5.6 x10

mrad/s

6.013, Electromagnetic Fields, Forces, aProf. Markus Zahn

p 10

pf = 9 x102

Hz

B. Drift-Diffusion Conduction [Neglect inertia]

0

n k Tdv q k T

m = q E m v V = E ndt n m m n

0

n k Tdv q k T

m = q E m v v = E ndt n m m n

2q n q k TJ = q n v = E n

m m

2q n q k TJ = q n v = E n

m m

= q n , = q n

J = E D

J = E D

q k T= , D =

m m

q k T= , D =

m m

charge mobilities

D D k T= =q

= ther

Einstein’s Relation

MolecularDiffusion

nd Motion Lectures 6 & 7Page 10 of 40

mal voltage (25 mV@ T300o K)

Coefficients

6.013, Electromagnetic Fields, Forces, and Motion Lectures 6 & 7Prof. Markus Zahn Page 11 of 40

C. Drift-Diffusion Conduction Equilibrium J J 0

J = 0 = E D = D

J = 0 = E D = D

D k T= = ln

q

D k T

= = lnq

q / kTo= e

Boltzmann Distributionsq / kT

o= e

o= 0 = = 0 = [Potential is zero when system is charge neutral]

2 q /kT q /kTo o2 q= = = e e = sinhkT

(Poisson - Boltzmann Equation)

Small Potential Approximation:q

1kT

q qsinh

kT kT

2 02 q

= 0k T

2d2

od

k T= 0 ; L =2 qL

Debye Length

6.013, Electromagnetic Fields, Forces, and MotionProf. Markus Zahn

D. Case Studies

1. Planar Sheet

d d

2x /L x /L

1 22 2d

d= 0 = A e A e

dx L

B.C. x = 0

ox 0 = V

d

d

x /Lo

x /Lo

V e x 0

x

V e x 0

/0

dx LV e

0V

( )

Lectures 6 & 7Page 12 of 40

/0

dx LV e

6.013, Electromagnetic Fields, Forces, and MotionProf. Markus Zahn

d

d

x /Lo

d

x

x /Lo

d

V e x 0L

dE = =

dxV

e x 0L

d

d

x /Lo2

d

x

x /Lo2

d

Ve x 0

L

dE= =

dxV

e x 0L

o

s x xd

2 Vx = 0 = E x 0 E x 0 =

L

2. Point Charge (Debye Shielding)

22

d

= 0L

22

1 rr rr

2

2

1= rr r

E. Ohmic Conduction

J = E D

J = E D

If charge density gradients smal

oJ = J J = E =

= ohmJ = E (Ohm’s Law)

Lectures 6 & 7Page 13 of 40

l, then negligible o= =

E = E

ic conductivity

d

d

2

2 2d

r /Lr /Ld1 2

r /L

d rr = 0 0

dr L

r = A e A e

Qr = e

4 r

6.013, Electromagnetic Fields, Forces, and Motion Lectures 6 & 7Prof. Markus Zahn Page 14 of 40

F. p—n Junction Diode

6.013, Electromagnetic Fields, Forces, and Motion Lectures 6 & 7Prof. Markus Zahn Page 15 of 40

A Dn p 2

i

N Nk T= = ln

q n

2 2A p D n

p n

qN x qN xx = 0 = =

2 2

22A pD n

n p

qN xqN x= = +

2 2

D nn p

qN x= x x

2

VII. Relationship Between Resistance and Capacitance In Uniform Media Describedby and .

u S S

L L

D da E daq

C = = =v E ds E ds

L L

S S

E ds E dsvR = = =i J da E da

v

6.013, Electromagnetic Fields, Forces,Prof. Markus Zahn

L L

S L

E ds E daRC = =

E da E ds

Check:

Parallel Plate Electrodes: l AR = , C = RC =

A l

Coaxial

bln aR = , C =b2 l ln

2

Concentric Spherica

and M

l

a

l

,

otion Lectures 6 & 7Page 16 of 40

RC =

,

6.013, Electromagnetic Fields, ForcesProf. Markus Zahn

1 2

1 1R R

R = , C =4

VIII. Charge Relaxation in U

uuJ = 0

t

uE =

uJ = E

uE

t

u

u u

e

=t

IX. Demonstration 7.7.1 –

,

, and Motion Lectures 6 & 7Page 17 of 40

1 2

RC =1 1R R

4

niform Conductors

u

u= 0 = 0t

e = = dielectric relaxation time

etu 00 = r, t = 0 e

Relaxation of Charge on Particle in Ohmic Conductor

6.013, Electromagnetic Fields, Forces, and MoProf. Markus Zahn

Courtesy of Hermann A. Haus and James R. Melcher. Used with permission.

Courtesy of Hermann A. Haus and James R. Melcher. Used with permission.

u

S S

qJ da = E da = =

+

+

+

++

++ +

,

++

++

tion

dqdt

Lectures 6 & 7Page 18 of 40

6.013, Electromagnetic Fields, Forces, and Motion Lectures 6 & 7Prof. Markus Zahn Page 19 of 40

ete

e

dq q= 0 q = q t = 0 e =

dt

Partially Uniformly Charged Sphere

Courtesy of Krieger Publishing. Used with permission.

0 1

3u 1 0

1

r R

4t = 0 = Q = R

30 r R

et0 1 e

u

1

e r R =t =

0 r R

e e

e

t t0

131

r

t

1 22

220

r e Q r e= 0 r R3 4 R

E r, t =

Q eR r R

4 rQ

r R4 r

su 2 0 r 2 r 2r = R = E r = R E r = R

et2

2

Q= 1 e

4 R

Figure 3-21 An initial volume charge distribution within an Ohmic conductor decays exponentiallytowards zero with relaxation time =/and appears as a surface charge at an interface of discontinuity.Initially uncharged regions are always uncharged with the charge transported through by the current.

6.013, Electromagnetic Fields, Forces, and Motion Lectures 6 & 7Prof. Markus Zahn Page 20 of 40

X. Self-Excited Water Dynamos

A. DC High Voltage Generation (Self-Excited)

As the drops form near the rings, image charges are induced on thesurface of the water. When the drops are completely formed (andinsulated from one another) they carry a net charge, the opposite sign tothe sign of charge on the surrounding ring.

Water drops fall into the cans through cross-connected wire loops. A potential difference of more than20 kV between cans is spontaneously generated by the motion of the drops. For optimum operation thedrops should form nearer the rings than shown. This is accomplished by increasing the flow rate.

6.013, Electromagnetic Fields, Forces, and Motion Lectures 6 & 7Prof. Markus Zahn Page 21 of 40

1

2

st21 2i 1 1 i

st12 1i 2 2 i

dvnC v = C v = V e nC V = C s V

dt

dvnC v = C v = V e nC V = C s V

dt

i1

i2

nC V1Cs

= 0nC

1 VCs

Det = 0

2

i inC nC= 1 s =

Cs C

root blows up

inCt

CeAny perturbation grows exponentially with time

B. AC High Voltage Self – Excited Generation

1

2

3

st2i 1 1

st3i 2 2

st1i 3 3

dvnC v = C ; v = V e

dtdv

nC v = C v = V edtdv

nC v = C v = V edt

6.013, Electromagnetic Fields, Forces, and Motion Lectures 6 & 7Prof. Markus Zahn Page 22 of 40

1i

2i

3i

VnC Cs 0

0 nC Cs V = 0

Cs 0 nC V

det = 0

13 3 i 3

i

nCnC + Cs = 0 s = 1

C

1 is = nC C (exponentially decaying solution)

i2,3

nCs = 1 3 j

2C (blows up exponentially because

sreal >0 ; but alsooscillates at frequency simag 0)

XI. Conservation of Charge Boundary Condition

uuJ = 0

t

1 3 1 3j1 1,

2

6.013, Electromagnetic Fields, Forces, and Motion Lectures 6 & 7Prof. Markus Zahn Page 23 of 40

u uS V

dJ da dV = 0

dt

a b su

dn J J = 0

dt

XII. Maxwell Capacitor

A. General Equations

x

x

_

a

_

b

E t i 0 x a

E =

E t i b x 0

a

x b ab

E dx = v t = E t b E t a

sua b a a b b a a b b

d dn J J = 0 E t E t E t E t = 0dt dt

b a

v t aE t = E tb b

b ba a a a a a

dE t v(t) E t a E t v(t) E t a = 0

b dt b

bb a b ba a a

v ta dE a dvE t =

b dt b b b dt

v(t)a, a

b, b

6.013, Electromagnetic Fields, Forces, and Motion Lectures 6 & 7Prof. Markus Zahn Page 24 of 40

B. Step Voltage: v t = V u t

Then dv= V t

dt (an impulse)

At t=0

b a b ba

a dE dv= = V tb dt b dt b

Integrate from t=0- to t=0+

+t 0 0t 0

b a b b ba a a

t 0t 0 t 0

a dE adt = E = V t dt = V

b dt b b b

aE t 0 = 0

b b b

a a aa b

a VE t = 0 = V E t = 0 =

b b b a

For t > 0, dv= 0

dt

b a b ba a a

a dE aE t = V

b dt b b

tb a b

aa b a b

V b aE t = A e ; =

b a b a

b b b ba

a b a b a b a b

V VE t = 0 = A = A = V

b a b a b a b a

t tb b

aa b a b

V VE t = 1 e e

b a b a

b aV aE t = E tb b

V

v(t)

6.013, Electromagnetic Fields, Forces, and Motion Lectures 6 & 7Prof. Markus Zahn Page 25 of 40

su a a b b a a b a

V at = E t E t = E t E t

b b

ba a b

a V= E t

b b

b a a b t

a b

V= 1 e

b a

C. Sinusoidal Steady State:

j tv t = Re V e

j ta aE t = Re E e

b

j tbE t = Re E e

Conservation of Charge Interfacial Boundary Condition

a a b b a a b b

dE t E t E t E t = 0

dt

a a a b b bˆ ˆE j E j = 0

b aˆ ˆE b E a = V

ab

ˆˆ E aVE =

b b

a

a a a b b

ˆˆ E aVE j j = 0

b b

a a a b b b b

ˆa VE j j = j

b b

a b

b b a a a a b b

ˆ ˆ ˆE E V= =

j j b j a j

su a a b bˆ ˆ= E Eˆ

a b b a

a a b b

= Vb j a j

6.013, Electromagnetic Fields, Forces, and Motion Lectures 6 & 7Prof. Markus Zahn Page 26 of 40

D. Equivalent Circuit (Electrode Area A)

a a a b b b

ˆ ˆI = j E A = j E A

a b

a a b b

V=

R RR C j 1 R C j 1

a ba b

a bR = , R =

A A

a ba b

A AC = , C =

a b

v(t)

6.013, Electromagnetic Fields, Forces, and Motion Lectures 6 & 7Prof. Markus Zahn Page 27 of 40

XIII. Magnetic Dipoles

Courtesy of Krieger Publishing. Used with permission.

Courtesy of Krieger Publishing. Used with permission.

6.013, Electromagnetic Fields, Forces, andProf. Markus Zahn

Diamagnetism

2z

e e eI = = , m = I R i =

2 2 2

2_ _2

z ze R

R i = i2

Angular Momentum _ _ _ _

2r r ze e eL = m R i v = m R R i i = m R i

r p e2m= m

e

linear momentum

L is quantized in units of 34h , h = 6.62x10 joule sec2

(Planck’s constant)

24 2

e e e

e L e h ehm = = = 9.3x10 amp m

2m 2 2 m 4 m

Bohr magneton mB

(smallest unit ofmagnetic moment)

Imagine all Bohr magnetons in sphere of radius R aligned. Net magnetic moment is

3 0B

0

A4m m R3 M

Total massof sphere

For iron: =7.86 x 103 kg/

Courtesy of Hermann A.

Motion Lectures 6 & 7Page 28 of 40

molecular weight

m3, M0=56

Haus and James R. Melcher. Used with permission.

Avogadro’s number = 6.023 x 1026 molecules per kilogrammole

6.013, Electromagnetic Fields, Forces, and Motion Lectures 6 & 7Prof. Markus Zahn Page 29 of 40

For a current loop

2 3 0 0B B

0 0

A A4 4m = i R = m R i = m R3 M 3 M

For R = 10 cm

26

-24 36.023 104i = 9.3 10 .1 7.86 10

3 56

= 1.05 x 105 Amperes

Thus, an ordinary piece of iron can have the same magnetic moment as acurrent loop of radius 10 cm of 105 Amperes current.

B. Magnetic Dipole Field

_ _0

r30

mH = 2 cos i sin i4 r

(multiply top & bottom by 0 )

Electric Dipole Field

_ _

r30

pE = 2 cos i sin i4 r

Analogy

0p m

P = Np M = Nm , N = # of magnetic dipoles / volume

Polarization Magnetization

6.013, Electromagnetic Fields, Forces, and Motion Lectures 6 & 7Prof. Markus Zahn Page 30 of 40

XIV. Maxwell’s EQS Equations with Magnetization

A. Analogy to Maxwell’s EQS Equations with Polarization

EQS

0 uE = P

p = P (Polarization or paired

charge density)

α b a b

0 sun E E = n P P

a b

sp = n P P

MQS

0 0H = M

m 0= M (magnetic charge

density)

α b a b

0 0n H H = n M M

a b

sm 0= n M M

H = J

0E = H Mt

6.013, Electromagnetic Fields, Forces, and Motion Lecture 6 & 7Prof. Markus Zahn Page 31 of 40

B. MQS Equations

0B = H M Magnetic flux density B has units of Teslas

(1 Tesla = 10,000 Gauss)

B 0

a an B B = 0

BE =

t

H = J

S

dv = , = B da

dt(total flux)

XV. Magnetic Field Intensity along Axis of a Uniformly Magnetized Cylinder

a b

sm 0 sm 0 0d= n M M z = = M2

sm 0 0dz = = M2

x H = J = 0 H =

6.013, Electromagnetic Fields, Forces, and MotionProf. Markus Zahn

20 0 m 0H = = = M

m2 m

0 V' 0

r ' dV '= r =

4 r r '

R Rsm sm

r'=0 r'=00 0

d dz = 2 r 'dr ' z = 2 r 'dr '2 2z =4 r r ' 4 r r '

R R

0 o 0 o1 1

2 22 2r'=0 r'=02 2

0 0

M 2 r 'dr ' M 2 r 'dr '=

d d4 r ' z 4 r ' z2 2

1

2 221

2 22

r 'dr ' = r ' z ar ' z a

RR1 12 22 2

2 20

r ' 0 r ' 0

M d dz = r ' + z r ' z

2 2 2

1 12 22 2

2 20M d d d d= R z z R z z

2 2 2 2 2

( )z

Lecture 6 & 7Page 32 of 40

2 2 1/ 20( / 2){ [ ] }M R d R d

6.013, Electromagnetic Fields, Forces, and MotionProf. Markus Zahn

01 1

2 22 22 2

dd zzM d22 z2 2

d dR z R z2 2

zH = =z

01 1

2 22 22 2

dd zzM d d22 2 z2 2 2d dR z R z

2 2

XVI. Toroidal Coil

Courtesy of Hermann A. Haus and James R. M

-d/2 d/

Hz

Lecture 6 & 7Page 33 of 40

elcher. Used with permission.

2

6.013, Electromagnetic Fields, Forces, and Motion Lecture 6 & 7Prof. Markus Zahn Page 34 of 40

1 1

1C

N i N iH dl = H 2 r = N i H =

2 r 2 R

2wB

4

2

2 2w

= N = N B4

Courtesy of Hermann A. Haus and James R. Melcher. Used with permission.

H 1 1 1 H

1

H 2 RV = i R = R V =Horizontalvoltage to oscilloscope

N

2 v2 2 2 v v 2 2

d dVv = = i R V = V R Cdt dt

If 2 v2 2 2 2 2 2 v v

2

d dV1R R C = R C V V =Verticalvoltage tooscilloscopeC dt dt

2

2

w= N B

4

2

v 22 2

1 wV = N B

R C 4

6.013, Electromagnetic Fields, Forces, and Motion Lecture 6 & 7Prof. Markus Zahn Page 35 of 40

Courtesy of Hermann A. Haus and James R. Melcher. Used with permission.

Courtesy of Hermann A. Haus and James R. Melcher. Used with permission.

Courtesy of Hermann A. Haus and James R. Melcher. Used with permission.

6.013, Electromagnetic Fields, Forces, and Motion Lecture 6 & 7Prof. Markus Zahn Page 36 of 40

XVII. Magnetic Circuits

In iron core:H = 0

lim B = H

B finite

NiH dl = Hs = Ni H =s

0

0

Dd N= H Dd = i

s

S

B da = 0

2 20 0Dd Dd= N = N i L = = N

s i s

6.013, Electromagnetic Fields, Forces, and Motion Lecture 6 & 7Prof. Markus Zahn Page 37 of 40

XVIII. Reluctance

0

lengthNi s= = =Dd permeability cross sec tionalarea

R

[Reluctance, analogous to resistance]

Series

Parallel

6.013, Electromagnetic Fields, Forces, and Motion Lecture 6 & 7Prof. Markus Zahn Page 38 of 40

A. Reluctances In Series

1 2

1 21 1 2 2

s s= , =

a D a DR R

1 2

Ni=R R

1 1 2 2C

H dl = H s H s = Ni

1 1 1 2 2 2= H a D = H a D

2 2 1 11 2

1 1 2 2 2 1 1 1 2 2 2 1

a Ni a NiH = ; H =

a s a s a s a s

B. Reluctances In Parallel

1 2 1 2C

NiH dl = H s = H s = Ni H = H

s

1 21 1 1 2 2 2 1 2

1 2

Ni= H a H a D = = Ni

R RP P

R R

1 21 2

1 1= ; =P P

R R

1=P

R[Permeances, analogous to Conductance]

6.013, Electromagnetic Fields, Forces, and Motion Lecture 6 & 7Prof. Markus Zahn Page 39 of 40

XIX. Transformers(Ideal)

Courtesy of Krieger Publishing. Used with permission.

A. Voltage/Current Relationships

1 1 2 2N i N i l= ; =

AR

R

Another way: 1 1 2 2C

H dl = Hl = N i N i

1 1 2 2N i N iH =l

1 1 2 21 1 2 2

N i N iA= HA = N i N i =

l R

6.013, Electromagnetic Fields, Forces, and Motion Lecture 6 & 7Prof. Markus Zahn Page 40 of 40

21 1 1 1 1 2 2 1 1 2

A= N = N i N N i = L i Mi

l

22 2 1 2 1 2 2 1 2 2

A= N = N N i N i = Mi L i

l

2 21 1 0 2 2 0 1 2 0 0

A 1L = N L , L = N L , M = N N L , L = =l R

12

1 2M = L L

1 1 2 1 21 1 1 0 1 2

d di di di div = = L M = N L N N

dt dt dt dt dt

2 1 2 1 22 2 2 0 1 2

d di di di div = = M L = N L N N

dt dt dt dt dt

1 1

2 2

v N=v N

1 2

1 1 2 22 1

i Nlim H 0 N i = N i =

i N

1 1

2 2

v i= 1

v i

Courtesy of Hermann A. Haus andJames R. Melcher. Used with permission.