Methionine: More than Milk€¦ · Key Points for Amino Acid Balancing of the Dairy Cow ......

Post on 30-May-2020

17 views 2 download

Transcript of Methionine: More than Milk€¦ · Key Points for Amino Acid Balancing of the Dairy Cow ......

Methionine in ruminants: where are we?

Methionine: More than MilkRobert BENNETT EMEA Ruminant Category Manager

AFMA Forum 2020Ruminant Formulation Workshop,March 2nd, 2020

1

Co-authors: D. Luchini, B. Sloan,

L. Bahloul, M. Shearing

Smartamine, MetaSmart, Microvit A Supra Ruminant - 2 - 10/03/2020

Mooooh!(I want Amino Acids!)

Constantly growing adoption in EMEA

3

fed Adisseo rumen protected methionine products

Key Points for Amino Acid Balancing of the Dairy Cow

➢ Animal benefits

➢ Environmental benefits

➢ AA requirements

➢ AA supplies

➢ Putting this into practice

➢ Economic benefits

4

Key Points for Amino Acid Balancing of the Dairy Cow

➢ Animal benefits

– Why do cows need amino acids?

– Performance: More milk, more protein, more fat

– Health

– Reproduction

– Nitrogen efficiency

– Transition cow

5

Essential

• Arginine

• Histidine*

• Isoleucine

• Leucine

• Lysine*

• Methionine*

• Phenylalanine

• Threonine

• Tryptophan

• Valine

Non-essential

• Alanine

• Aspartic acid

• Asparagine

• Cysteine

• Glutamic acid

• Glutamine

• Glycine

• Proline

• Serine

• Tyrosine

20 standard amino acids in protein

Schwab, 2015.

6

Amino acids are key in making many proteins

Protein

synthesis

Tissue

proteinsEnzymes

Blood

proteins

Milk

proteins

Receptor

proteins

Ion channel

proteins

Messenger

proteins

Amino

Acids

Connective

Epithelial

Nervous

Muscle

Albumins

Globulins

Fibrinogen

Regulatory proteins

Clotting factors

FeedMetabolizable protein

Microbial, “escape,” endogenous

7

Dairy cows have amino acid requirements, not protein requirements

Dr. Charles G. (Chuck) Schwab

Professor Emeritus, Animal Sciences,University of New Hampshire

9

Dairy cows clearly have AA requirements!They respond to supplementation

• 1993: Initial dose-response curves and requirements, based on milk protein

• Further years: Responses in milk yield, fat, health, and reproduction

-60

-40

-20

0

20

40

60

1,7 1,8 1,9 2 2,1 2,2 2,3 2,4 2,5 2,6 2,7

Pro

tein

Pro

duction (

g/j)

METDI (%PDIE)

Requ

ire

men

t

Ale

rt

Requ

ire

men

t

Ale

rt

Methionine and Lysine are the first 2 limiting AA in most dairy cow rations

Up to + 3 g protein/kg milk (+10%)

Over 70 trials Over 40 trials

-200

-150

-100

-50

0

50

100

5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11

LYSDI (%PDIE)

Pro

tein

Pro

du

ctio

n (

g/j)

H. Rulquin et al (INRA Rennes),1993.

10

Amino Acids in dairy cows rationWhy are Met and Lys Limiting?

Met (% CP) Lys (% CP)

Milk 3.0 7.9

Microbes 2.8 8.0

Forages 1.3-1.6 2.8-4.7

Grains 1.5-2.0 2.8-3.6

Plant Proteins 1.3-2.0 2.8-6.1

Fiber By-products 1.0-1.5 4.0-6.3

The combined contribution of Microbes (Microbial Protein) and Feed (Bypass Protein) is less than Milk composition

11

4

9

3 4 5 6 7 8 9

1

2

3

7

11

1823

10

LysDi ( %PDIE)

MetDi ( %PDIE)

6

1 Grass silage

2 Maize silage

3 Wheat

4 Corn grain

5 Corn gluten meal

6 Soybean meal

7 Protected Soybean meal

8 Rapeseed meal

9 Ground nut meal

10 Alfalfa

11 Brewer’s Yeast

12 DDGS

5

6,8 7,5

2,2

2,5

Objective:Balanced ration

LysDi: >6,8 %

MetDi: >2,2 %

12

Feedstuffs are deficient in methionineMethionine and lysine requirements for dairy cows and some raw material LysDi/MetDi values

12

INRA 2007

Key Points for Amino Acid Balancing of the Dairy Cow

➢ Animal benefits

– Why do cows need amino acids?

– Performance: More milk, more protein, more fat

– Health

– Reproduction

– Nitrogen efficiency

– Transition cow

13

Source: Institut d’Elevage/EDE 49/Association GALA/RPAN.

..

6.83 LysDI/2.08 MetDI

6.83 LysDI/1.75 MetDI % of PDIE

25

26

27

28

29

30

31

32

33

34

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Trial

end

Trial

start

+ 1,0

+ 1,5

+ 1,1

+ 1,7 + 1,9

Digestible methionine improves milk protein, quickly and increasingly

Milk

pro

tein

conte

nt

g/k

g

14

27

28

29

30

31

32

33

34

35

36

37

0 1 2 3 4 5 6 7 8 9 10 11 12

RP-Met (6 cows)

Control (8)

Influence of RP-Met on milk production at the beginning of lactation

in cows quickly mobilizing their body reserves

Source INRA THEIX

Lactation week

Milk

(l)/c

ow

/day

Methionine

Milk : + 2,5 liters

Improved energy utilization for milk production in cows quickly mobilizing their body reserves

15

1996

16

Effect on milk protein level Effect on milk yield

Effect on somatic cell count Effect on calving interval

Kemin - Adisseo, MetaSmart Europe - 17 -

0.00

0.05

0.10

0.15

0.20

0.25

Protein content Fat content0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

Milk yield

Kg m

ilk

Summary of 6 trials, conducted at INRA Rennes, INRA Nancy, University of New Hampshire, Ohio

State University. Average production: 39 kg milk, 3.75% fat, 3.10% protein. Average HMBi powder

dose: 30 g/head/day (14-43 g)

Min. Average Max

1 - Early lactation increases with HMBi

% c

om

ponents

More milk, more protein, more fat –shown at International Research Centers

3.4

2.0

0.1

0.16

0.25

0.18

0.08

0.14

0.11

More DMI with Methionine

18

HMBi or RP-Met RP-Met

Con vs HMBi and RP-Met

More milk with Methionine

19

HMBi or RP-Met RP-Met

Con vs HMBi and RP-Met

Methionine supplementation and lactation performance

20

Why do we need to feed methionine?

Health

Milk production and composition

21

Why balance amino acids?

• Performance

• Health: Liver and immunity

• Reproduction

• Transition cow

• Reduce diet CP

• Practical:

– Increase performance, or

– Reduce cost

22

.

Ration deficient in MetDI at the start of lactationHealth issues

beginning of lactation:

mobilization of triglycerides

Ketone bodies

Storage

Steatosis

Adipose tissues

Fat reserves

Triglycerides

VLDL

VLDL

Energy available

to the animal

Important lack of energy

and low level of MetDI

23

.

Methionine plays an active role in liver function

Lack of energy

Ketone bodies

VLDL

VLDL Methionine

stimulates the

production of VLDL

24

Adipose tissues

Fat reserves

beginning of lactation:

mobilization of triglycerides

Energy available

to the animal

Storage

Triglycerides

-25

-20

-15

-10

-5

0

5

10

15

-20

-15

-10

-5

0

5

10

15

Exit minus Entry of VLDL

At liver level in g/l

VLDL balance in the liver following a supply of lysine and methionine

before after before after

cow 1 cow 2

INRA THEIX

Risk of

steatosis

Effect of a supplementation with digestible amino acids on the hepatic functioning of dairy cows at the start of lactation

during during

Favorable

state

25

Source INRA THEIX

Influence of the concentration of MetDI in the ration on the blood levels of

ß-hydroxybutyrate and acetone during the second week of lactation

0

0,5

1

1,5

2

2,5

3 Control ( 8 )

+ RP-Met ( 6 )2,78

1,86

ß-hydroxybutyrate AcetonemM mg/dl

Increasing MetDI supply helps reducesteatosis and ketosis incidences

0

1

2

3

4

5

6

7

6,1

2,2

26

Why balance amino acids?

• Performance

• Health: Liver and immunity

• Reproduction

• Transition cow

• Reduce diet CP

• Practical:

– Increase performance, or

– Reduce cost

27

Metabolic stress during transition and impact on the immune system

Tissue injury

Inflammatory

processes

mediated by

immune cells

Cytokine

production

(TNFα, IL-1, & IL-6)

Acute phase

protein changes

Liver

Causes

bacterial, viral,

oxidative stress

(from ROS),

tissue trauma

(haptoglobin, SAA,

ceruloplasmin, reactive protein C,

fibrinogen, compliment

Positive acute

phase proteins

Albumin, lipoproteins, retinol

binding protein, paraoxonase,

cortisol binding globulin

Negative acute

phase proteins

28

J.S. Osorio 2013 trial(Illinois)

29

*Mammalian NutriPhysioGenomics.†Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, 1207 West Gregory Drive, Urbana 61801.‡Adisseo, Alpharetta, GA 30022.

J. Dairy Sci. 96:1-16. http://dx.doi.org/10.3168/jds.2012-5790. © American Dairy Science Association®, 2013.

Osorio et al. (2013, 2014a,b, 2015).

Supplemental RP-Met or HMBi during the transition period benefit postpartal

cow performance and blood neutrophil functionJ.S. Osorio*†, P. Ji*†1, J.K. Drackley†, D. Luchini‡, and J.J. Loor*†2

-50 d -21 d 0 d +30 d

1.3 M cal/kg DM

Far-off

1.54 M cal/kg DM

Close-up

1.67 M cal/kg DM

Fresh

Control (Con)

Con + HMBi

Con + RP-Met

Control (Con)

Con + RP-Met

Con + HMBi

Calving

30

Will alleviating a Met deficiency lessen the negative effects of fat mobilization that often leads to fatty livers?

Close-up Lactation

Corn silage 35.9 33.0

Alfalfa silage 8.2 5.0

Alfalfa hay 3.5 4.0

Wheat straw 15.4 4.0

Cottonseed --- 3.5

Wet brewers grains 6.0 10.0

Ground shelled corn 13.0 22.2

Soy hulls 4.0 4.0

SBM, 48% CP 3.1 3.3

Expeller SBM 2.0 6.2

SoyChlor 3.8 ---

Blood meal 1.0 0.3

Urea 0.3 0.14

Rumen-inert fat --- 1.0

(Osorio et al., 2013).

31

Will alleviating a Met deficiency lessen the negative effects of fat mobilization that often leads to fatty livers?

(Osorio et al., 2013).

32

Close-up Postpartum

CON HMBi RP-Met CON HMBi RP-Met

RDP, % 10 10 10 10.9 10.7 10.6

RUP, % 5.1 5.1 5.1 6.5 6.7 6.8

RDP bal., g/d 32 35 40 35 30 16

RUP bal., g/d 499 551 518 -676 -723 -728

Lys, % MP 6.66 6.6 6.62 6.17 6.09 6.06

Met, % MP 1.86 2.35 2.38 1.81 2.15 2.15

MP-Lys, g 79 82 80 96 110 113

MP-Met, g 22 29 29 28 39 40

Lys/Met 3.59/1 2.82/1 2.76/1 3.43/1 2.82/1 2.82/1

DMIPre and post calving

Day relative to calving Day relative to calving

Diet P = 0.67

Time P <.001

DxT P = 0.42

Diet P = 0.18

Time P <.001

DxT P = 0.78

Met P = 0.06

Control

HMBi

RP-Met

34

Results:DMI, milk production and composition

ECM=Energy Corrected Milk, Met=Contrast statement of Control vs. RP-Met + HMBi.

Osorio et al. 2013 J Dairy Sci. 96:6248.

35

Diet P -value

CON HMBi RP-Met Diet Met1

BCS 2.79 2.52 2.66 0.11 0.06

DMI, kg/d 13.3 15.2 15.6 0.18 0.06

Milk, kg/d 35.7b 38.1ab 40.0a 0.15 0.08

Milk protein, % 3.04b 3.26a 3.19ab 0.13 0.05

Milk fat, % 4.27 4.68 4.09 0.59 0.36

ECM, kg/d 41.0b 44.8a 45.0a 0.09 0.03

Inflammation and liver healthAlbumin (- APP)

33

34

35

36

37

38

-21 -10 7 14 21

Alb

um

in (

g/L

)

Day relative to parturition

CON MS SM

Bertoni et al., 2008. J Dairy Sci

Diet, P = 0.28

Time, P = 0.04

Osorio et al., 2014 JDS

UP=Upper Liver Activity Index, INUP=Intermediate Upper Liver Activity Index, INLO=Intermediate Low Liver Activity Index,

LO Low Liver Activity Index.

Osorio et al. 2013 J Dairy Sci. 96:6248.

D × T, P = 0.20

Contrast, P = 0.15

36

HMBi RP-Met

Prevention of oxidative stress

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

-10 7 21

Glu

tath

ion

e (

mM

)

Day relative to parturition

CON MS SM

Osorio et. al., 2014.

37

HMBi RP-Met

Frequency of occurrence of health problems

Osorio et al. (2013).

Diet

CON MS SM

Assigned cows 24 15 17

Cows removed 10 3 4

Twins 2 0 1

Ketosis 6 1 2

Displaced abomasum 3 2 2

Retained placenta 0 1 1

Cows completing study 14 12 13

38

RP-MetHMBi

Why balance amino acids?

• Performance

• Health: Liver and immunity

• Reproduction

• Transition cow

• Reduce diet CP

• Practical:

– Increase performance, or

– Reduce cost

49

Why do we need to feed methionine?

Reproduction

Milk production and composition

50

Corn silage Grass silage

Interval,

Calving to 1st AI

Average

number

of AI / FI

% uterine

involution

68

64

1.751.60 33

56

71

62

1.801.60

43

53

Robert et al

Effect of RP-Met on dairy cows fed with corn or grass silage

7.0% LysDI & 1.7% MetDI

6,9% LysDI & 2,4% MetDI

Increase in ration MetDI at the beginning of lactation improves dairy cow reproduction

51

Interval,

Calving to 1st AI

Average

number

of AI / FI

% uterine

involution

About 50% of the embryos are lost during the first 50 days of gestation

• Embryonic period of gestation: From conception to end of the organ differentiation stage (i.e. from conception to 42 d of gestation)

– Early embryonic death < 24 d of gestation

– Late embryonic death from 24 to 42 d of gestation

• Fetal period of gestation (from 42 d of gestation to delivery)

a% of fertilized embryos that are viable (graded 1-3).

Santos et al., Anim. Reproduction Science 2004 82-83:513.

Induction of ovulation of small, incompetent follicles, results in reduced embryo survival

Early embryonic death

Embryos collected via

uterine flush Days from AI Fertilization %

Fertilized embryos

Viable (%) a Total (%)

165 5 - 6 76 65 50

Late embryonic death (4870 cows)

1st pregnancy check 2nd pregnancy check Interval (d) Pregnancy loss (%) Loss/day (%)

27 - 31 38 - 50 ~ 15 13 0.85

52

Culture in bovine serum

Culture in rat serum

Can methionine prevent embryonic losses?

53

Cow serum with: Embryo protein % Abnormal

None 73.7 + 8.6a 100%

Amino acids + vitamins 130.0 + 7.7b 0%

Amino acids 117.1 + 8.5b 0%

Vitamins 56.6 + 5.76a 100%

Amino acids w/o methionine 82.9 + 8.7a 100%

Methionine 133.7 + 5.5b 0%

Coelho et al., 1989.

54

Reproduction trials (Univ. of Florida and Univ. of Wisconsin)

• Methionine requirements for the preimplantation bovine embryoL. Bonilla, D. Luchini, E. Devillard and P. Hansen (Journal of Reprod. and Dev., 2010)

In vitro fertilization of 1 d old oocytes incubated under different methionine concentrations

• Effect of dietary methionine supplementation on early embryonic deathA. Souza, P. Carvalho, A. Dresch, L.Vieira, K. Hackbart, D. Luchini, S. Bertics, N. Betzold, M. C. Wiltbank, R. D. Shaver (ADSA, 2014)

Evaluation of early embryo development from super ovulated cows flushed 7 days after AI

• Effect of dietary methionine supplementation on the transcriptome of bovine preimplantation embryosF. Penagaricano, A. Souza, P. Carvalho, A. Driver, R. Gambra, J. Kropp, K. Hackbart, D. Luchini, R. Shaver, M. Wiltbank and H. Khatib (Plos

ONE, 2013)

Evaluation of the full transcriptome (all RNA molecules) to compare the gene expression of pre-implanted embryos

• Effect of methionine supplementation on methylation and lipid accumulation of the preimplantation embryo

in dairy cowsD. Acosta, A. Denicol, C. Skenendore, Z. Zhou; M. Corrêa, D. Luchini, P. Hansen, J. Loor, and F. Cardoso (ADSA, 2015)

Evaluation of early embryo composition and intrafolicular methionine concentration

• Effect of dietary methionine supplementation on preventing embryo lossesM.Toledo, G. Baez, E.Trevisol, N.Lobos, J. Guenther, D. Luchini, R. Shaver, M. Wiltbank (ADSA 2015)

55

Effect of dietary methionine on preventing embryo losses

*At 18 d after AI for Interferon-tau gene expression (biomarker of pregnancy).

*At 28 d after AI for Pregnancy Associated Glycoproteins and Pregnancy Associated Protein- B (biomarkers of pregnancy).

**Size of embryo at 33, 47 and 61 DIM after AI.

7 d Double ovsynch d 36 to 62 Early Preg* Ultrasound**

21 28 66 AI 127

Days after calving

Critical time (first 60 days of pregnancy)

56

Effect of dietary methionine on preventing embryo losses

• Cows fed the same basal diet and top dressed daily with 21 g of RP-Met or DDG from 21 DIM to the second pregnancy check at 127 DIM

• Embryo growth and the ideal position and orientation of the conceptus was estimated by images captured for 15 seconds at day 33 after TAI

• Pregnancy check at days 33, 47 and 61 after TAI

Toledo et al., ADSA 2015.

Daily individual

cow feeding

Amniotic vesicle

and Embryo size

57

Multiparous cows had larger embryos with RP Methionine

Embryo size

Ellipsoid volume

Crown-rump length

Abdominal diameter

Toledo et al., ADSA 2015.

58

Multiparous cows had larger embryos with RP-Methionine

Embryo size

Ellipsoid volume

Crown-rump length

Abdominal diameter

Embryo size (± SEM)

Day 33 Crown-rump length (mm) Abdominal diameter (mm) Volume (mm3)

Primiparous

Control 35 10.4 ± 0.24 5.6 ± 0.11 169.6 ± 7.7

RPM 38 10.9 ± 0.24 5.7 ± 0.16 191.9 ± 14.3

P-value 0.10 0.54 0.21

Multiparous

Control 36 10.5 ± 0.24 5.3 ± 0.12 160.5 ± 9.2

RP-Met 44 11.0 ± 0.22 5.9 ± 0.18 209.3 ± 15.6

P-value 0.27 0.03 0.01

Toledo et al., ADSA 2015.

59

Multiparous cows fed RP-Met had less pregnancy losses

The “one number”: Pregnancy losses from 28 to 61 DIM

12,8

19,6

14,6

6,1

0

5

10

15

20

25

Primiparous Multiparous

CO

SM

6/41

P>0.5

5/39 10/51 3/49

P<0.05

60

Key Points for Amino Acid Balancing of the Dairy Cow

➢ Animal benefits

– Performance: More milk, more protein, more fat

– Health

– Reproduction

– Nitrogen efficiency

– Transition cow

61

36,5

34

30,8

27,5

25,4

20

22

24

26

28

30

32

34

36

38

0

50

100

150

200

250

300

483 531 605 641 711

Eff

icie

nc

y o

f N

uti

liza

tio

n

(mil

k N

as

% o

f N

in

tak

e)

Mil

k, u

rin

e a

nd

fe

ca

l

N e

xc

reti

on

(g

/d)

N intake (g/d)

Efficiency of N Utilization (Olmos Colmenero and Broderick, 2006)

Milk N (g/d) Urine N (g/d) Fecal N (g/d) Efficiency (Milk N as % of N Itake)

Shall we feed more CP (or more N) to increase production? NO !

62

Three seminal trials on N reduction with Amino Acids

63

• Noftsger & St-Pierre, 2003: From 18.6 to 16.9% CP with AAs

• Sylvester & St-Pierre, 2005: At 16.6% CP, performance improvements wih AAs

• Chen & Broderick, 2005: From 16.9 to 15.6 % CP with AAs

• Sixty Holstein cows (32 multiparous, 647 kg BW and 28 primiparous, 550 kg BW)

• Cows assigned to 4 treatments and fed the diets from 4 to 12 weeks in lactation

• Treatments were:

High Protein (18.3%) – Low RUP digestibility (HP-LD)

High Protein (18.3%) – High RUP digestibility (HP-HD)

Low Protein (16.9%) – High RUP digestibility (LP-HD)

Low Protein (16.9%) – High RUP digestibility + MET (LP-HD+Met)

Noftsger, S. and N.R. St-Pierre. 2003, J. Dairy Sci. 86 958-969

Formulating for MET and LYS Saves MP & Maximizes Components

Ingredients HP-LD HP-HD LP-HD LP-HD+MET

Corn silage 37.5 37.5 37.5 37.5

Alfalfa silage 12.5 12.5 12.5 12.5

Ground shelled corn 20.0 19.8 22.4 22.3

Soybean meal (48%) 6.8 9.2 7.7 7.7

Whole cottonseed 8.4 8.4 8.4 8.4

Soy hulls 3.4 3.4 3.4 3.4

Porcine meat meal1 8.0 - - -

ProvAAl2 - 4.0 2.4 2.4

RP-Met - - - 0.042

HMB - - - 0.084

Megalac 0.5 0.5 0.5 0.5

Tallow - 0.32 0.57 0.57

Urea - - 0.19 0.19

Minerals & vitamins 2.9 4.8 4.8 4.8

Noftsger, S. and N.R. St-Pierre. 2003, J. Dairy Sci. 86 958-96965

1 Low digestible protein source (low LYS)2 High digestible animal protein source (high LYS)

Formulating for MET and LYS Saves MP & Maximizes Components

Noftsger, S. and N.R. St-Pierre. 2003, J. Dairy Sci. 86 958-969

Item HP-LD HP-HD LP-HD LP-HD+MET

CP, % 18.6 18.5 16.9 16.9

RDP, % 11.4 10.7 10.2 10.2

RUP, % 7.2 7.8 6.7 6.7

LYS, % MP 6.25 6.42 6.57 6.57

MET, % MP 1.79 1.70 1.74 2.01

LYS, g/d 171 190 181 181

MET, g/d 48.6 50.4 47.8 55.2

LYS:MET 3.5 3.8 3.8 3.3

66

Protein Balance* (NRC, 2001)

* Estimated for a cow producing 45.5 kg of milk and 23.8 kg DMI

Formulating for MET and LYS Saves MP & Maximizes Components

HP-LD HP-HD LP-HD LP-HD+MET P <

Milk, kg/d 40.9b 46.3a 43.0b 46.7a 0.01

ECM1 , kg/d 39.6 46.2 43.1 47.2

Fat, kg/d 1.39 1.67 1.57 1.71 0.01

Protein, kg/d 1.20 1.38 1.28 1.44 0.01

Fat, %, 3.42 3.64 3.66 3.73 0.05

Protein, % 2.95 2.98 2.99 3.09 0.04

MUN, mg/dL 16.8a 17.3a 14.3b 13.5c 0.001

Milk N/N intake 29.5c 31.1b 31.7b 35.0a 0.05

Noftsger, S. and N.R. St-Pierre. 2003, J. Dairy Sci. 86 958-96967

1 ECM(3.5% fat, 3.2% Protein) = (.3246 X Kg milk + 12.86 X Kg Fat + 7.04 X Kg Prot) – JDS 80:938

Formulating for MET and LYS Saves MP & Maximizes Components

HP-LD HP-HD LP-HD LP-HD+MET P <

Milk, kg/d 40.9b 46.3a 43.0b 46.7a 0.01

ECM1 , kg/d 39.6 46.2 43.1 47.2

Fat, kg/d 1.39 1.67 1.57 1.71 0.01

Protein, kg/d 1.20 1.38 1.28 1.44 0.01

Fat, %, 3.42 3.64 3.66 3.73 0.05

Protein, % 2.95 2.98 2.99 3.09 0.04

MUN, mg/dL 16.8a 17.3a 14.3b 13.5c 0.001

Milk N/N intake 29.5c 31.1b 31.7b 35.0a 0.05

Noftsger, S. and N.R. St-Pierre. 2003, J. Dairy Sci. 86 958-96968

1 ECM(3.5% fat, 3.2% Protein) = (.3246 X Kg milk + 12.86 X Kg Fat + 7.04 X Kg Prot) – JDS 80:938

Two messages:

- Look at ECM to evaluate the cow’s response

- Design your diets to maximize N efficiency

Formulating for MET and LYS Saves MP & Maximizes Components

Down to 15.6% CP with AAs

• Seventy Holstein cows (50 multiparous and 20 primiparous)

• Cows assigned to 5 treatments for 12 weeks

• Treatments were:

Low Protein (LP): 15.6% CP with an unbalanced Lys:Met

LP + HMBi: LP + 9 g of MP-Met (40 g HMBi powder) to balance Lys:Met ratio

LP + RP-Met & HMB: LP + 9 g of MP-Met (15 g RP-Met) + 24g HMB (27g Liquid HMB)

LP +RP-Met: LP + 9 g of MP-Met (15 g RP-Met) to balance the Lys:Met

Traditional Protein: 16.9% CP diet with DDG with an unbalanced Lys:Met

Z.H. Chen, G.A. Broderick, N.D. Luchini, B.K. Sloan and E. Devillard, 2005

JDS 94:1978-1988

Chen et al., 2011 - J. Dairy Sci. 94:1978–1988

Why and when we shall balance the AA of the diet?

Item Low Protein

(15.7%)

Low Protein +

HMBi

Low Protein +

RP-Met

Traditional

(16.9% CP)

CP, % 15.6 15.6 15.6 16.9

RDP, % 10.4 10.4 10.4 10.9

RUP, % 5.2 5.2 5.2 6.0

MP, g/d 2444 2453 (+9) 2453 (+9) 2593 (+ 149)

LYS, % MP 6.59 6.59 6.59 6.17

MET, % MP 1.84 2.21 2.21 1.85

LYS, g/d 161 161 161 160

MET, g/d 45 54 54 48

LYS:MET 3.6 3.0 3.0 3.3

74

Nutrient Balance*

Chen et al., 2011 - J. Dairy Sci. 94:1978–1988

* 25 Kg DMI

HMBi and RP-Met both as effective with lower CP diet

a,b(P < 0.05)

ItemLow Protein

(15.7%)

Low Protein +

HMBi

Low Protein +

RP-Met

Traditional

(16.9% CP)P > F

Milk, kgs 41.8 42.1 41.7 41.2 0.98

Fat % 3.52 3.93 3.77 3.85 0.08

Prot % 3.03b 3.19a 3.15ab 3.05bc 0.01

Fat Yield, kgs 1.42 1.60 1.62 1.61 0.07

Prot Yield, kgs 1.24 1.30 1.33 1.25 0.09

ECM, kgs/d 40.6b 43.4a 43.0ab 42.9ab 0.02

MUN, mg/dL 10.0b 10.2b 11.2ab 13.2a 0.01

Milk N/N Intake 32.0bc 32.3b 34.5a 30.2c <0.01

Chen et al., 2011 - J. Dairy Sci. 94:1978–198875

Results of Feeding two Ruminant Methionine Sources for 12 weeks

1 ECM(3.5% fat, 3.2% Protein) = (.3246 X Kg milk + 12.86 X Kg Fat + 7.04 X Kg Prot) – JDS 80:938

HMBi and RP-Met both as effective with lower CP diet

a,b(P < 0.05)

ItemLow Protein

(15.7%)

Low Protein +

HMBi

Low Protein +

RP-Met

Traditional

(16.9% CP)P > F

Milk, kgs 41.8 42.1 41.7 41.2 0.98

Fat % 3.52 3.93 3.77 3.85 0.08

Prot % 3.03b 3.19a 3.15ab 3.05bc 0.01

Fat Yield, kgs 1.42 1.60 1.62 1.61 0.07

Prot Yield, kgs 1.24 1.30 1.33 1.25 0.09

ECM, kgs/d 40.6b 43.4a 43.0ab 42.9ab 0.02

MUN, mg/dL 10.0b 10.2b 11.2ab 13.2a 0.01

Milk N/N Intake 32.0bc 32.3b 34.5a 30.2c <0.01

Chen et al., 2011 - J. Dairy Sci. 94:1978–198876

Results of Feeding two Ruminant Methionine Sources for 12 weeks

1 ECM(3.5% fat, 3.2% Protein) = (.3246 X Kg milk + 12.86 X Kg Fat + 7.04 X Kg Prot) – JDS 80:938

HMBi and RP-Met both as effective with lower CP diet

a,b(P < 0.05)

ItemLow Protein

(15.7%)

Low Protein +

MetaSmart

Low Protein +

Smartamine® M

Traditional

(16.9% CP)P > F

Milk, kgs 41.8 42.1 41.7 41.2 0.98

Fat % 3.52 3.93 3.77 3.85 0.08

Prot % 3.03b 3.19a 3.15ab 3.05bc 0.01

Fat Yield, kgs 1.42 1.60 1.62 1.61 0.07

Prot Yield, kgs 1.24 1.30 1.33 1.25 0.09

ECM, kgs/d 40.6b 43.4a 43.7ab 42.9ab 0.02

MUN, mg/dL 10.0b 10.2b 11.2ab 13.2a 0.01

Milk N/N Intake 32.0bc 32.3b 34.5a 30.2c <0.01

Chen et al., 2011 - J. Dairy Sci. 94:1978–198877

Results of Feeding two Ruminant Methionine Sources for 12 weeks

1 ECM(3.5% fat, 3.2% Protein) = (.3246 X Kg milk + 12.86 X Kg Fat + 7.04 X Kg Prot) – JDS 80:938

Two Messages:

- AA balancing can save grams of MP

- Use commercial sources of RP-AA to add

the “last” grams AA

HMBi and RP-Met both as effective with lower CP diet

Key Points for Amino Acid Balancing of the Dairy Cow

➢ Animal benefits

– Performance: More milk, more protein, more fat

– Health

– Reproduction

– Nitrogen efficiency

– Transition cow

➢ Environmental benefits:

– Environment: less N excretion

– Sustainability: less resources needed

78

Balancing AA’s can reduce N load on land

• EU Nitrogen Directive:

Will limit manure spreading (to 170kg N per ha per year)

• Better balanced diets:

Will help – They excrete less N in manure

• Example: OSU 2005 trial

Control MetaSmart

Land required to produce 1 million liters milk (ha) 56 ha 51 ha

Stocking rate allowed (cows per 100 ha) 89 cows 97 cows

HMBi

Key Points for Amino Acid Balancing of the Dairy Cow

➢ Animal benefits

➢ Environmental benefits

➢ AA requirements

➢ AA supplies See you on Friday

➢ Putting this into practice

➢ Economic benefits

80

Key Points for Amino Acid Balancing of the Dairy Cow

➢ Animal benefits

➢ Environmental benefits

➢ AA requirements

➢ AA supplies

➢ Putting this into practice

➢ Economic benefits

81

A dedicated App to calculate economic benefits

82

Net gain from milk, health and reproduction (1000 cow farm example)

83

Why balance amino acids?

• Performance: More milk, more protein, more fat

• Health

• Reproduction

• Transition cow

• Reduce diet CP

• Practical:

– Increase performance, or

– Reduce cost

• Putting this into practice: see you on Friday

84

Smartamine, MetaSmart, Microvit A Supra Ruminant - 85 - 10/03/2020

Mooooh!(thank you

for your attention)

Formulation options

86