Metal-dependent photocatalytic activity and magnetic · Metal-dependent photocatalytic activity and...

Post on 16-Jul-2020

29 views 0 download

Transcript of Metal-dependent photocatalytic activity and magnetic · Metal-dependent photocatalytic activity and...

Metal-dependent photocatalytic activity and magnetic

behaviour of a series of 3D Co-Ni metal organic framework

Zhichao Shaoa, Xiao Hana,b, Yeye Liua, Wenjuan Xua, Qiong Wua, Qiong Xiea, Yujie Zhaoa and Hongwei Hou a,*

aCollege of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001,

China.

bCollege of Chemical Engineering & Material, Handan University, Hebei, 056005, China

Author for correspondence:

Prof. Hongwei Hou, E-mail: houhongw@zzu.edu.cn.

Electronic Supplementary Material (ESI) for Dalton Transactions.This journal is © The Royal Society of Chemistry 2019

Supporting Information

Fig. S1 Supporting structure figures.

Fig. S2 Thermogravimetric curve of 1.

Fig. S3 PXRD data of 1-6.

Fig. S4 UV-vis diffuse reflectance spectra of H3L and 4,4’-bpy.

Fig. S5 The plot of maximum absorption and ratio of M2+ in complexes 1-6.

Fig.S6 The adsorption behavior of 1 for methylene blue and fluorescein.

Fig.S7 Photocatalytic results of Fluorescein solution in the presence of complexes 1-6.

Fig.S8 The fluorescence spectra before and after photocatalytic experiments.

Fig. S9 Photocatalytic decomposition of organic dyes.

Fig. S10 Color change of dyes before and after photocatalysis.

Fig. S11 Comparison of degradation rates of different dyes dissolved.

Fig.S12 Pseudo-first-order kinetics curves of the degradation of RhB.

Fig. S13 The PXRD patterns of 1 after bleaching experiment.

Fig. S14 The water stability of 1.

Fig. S15 Recycling test on 1 for MB photodegradation under visible light irradiation.

Fig. S16The AC magnetic susceptibility at frequencies of 10000-10 Hz of 6.

Table S1 Rate constants for photodegradation of dyes by 1 in comparison with other

reported catalysts.

Table S2 Crystallographic parameters of 1.

Table S3 Selected bond lengths (Å) and bond angles (deg) for 1.

Table S4 Crystallographic parameters of 1-6.

Fig. S1 (a) Coordination environment around Co1 in 1. (b) Coordination environment around Co2 in 1. (c) Coordination mode of L3-. (d)View of the channel structure.

Fig. S2 Thermogravimetric analyses of 1.

Fig. S3 Simulated and experimental PXRD data for 1-6.

Fig.S4 UV-vis diffuse reflectance spectra of ligands (H3L and 4,4’-bpy).

Fig. S5 The plot of maximum absorption and ratio of M2+ in complexes 1-6.

Fig.S6 The adsorption behavior of 1 for methylene blue and fluorescein.

Fig.S7 Photocatalytic decomposition of Fluorescein solution in the presence of complexes 1-6 after irradiation for 60 mins.

Fig.S8 The fluorescence spectra before and after photocatalytic experiments.

Fig.S9 Photocatalytic decomposition of organic dyes. (a: Methyl orange, b: Gentian violet, c: Methylene blue, d: Rhodamine B, e: Rhodamine 6G, f: Fluorescein).

Fig.S10 Color change of dyes before and after photocatalysis.

Fig.S11 Comparison of degradation rates of different dyes dissolved.

Fig.S12 Pseudo-first-order kinetics curves of the degradation of RhB.

Fig.S13 The PXRD patterns of 1 at the end of final repeated bleaching experiment.

Fig.S14 The water stability of 1.

Fig.S15 Recycling test on 1 for MB photodegradation under visible light irradiation.

Fig.S16 The AC magnetic susceptibility at frequencies of 10000−10 Hz of 6.

Table S1. Rate constants for photodegradation of dyes by 1 in comparison with other reported catalysts (Take rhodamine b for example).

Catalyst k [min-1] Ref

NNU-36 0.0468 ACS Sustainable Chem. Eng. 2017, 5, 4449 –4456

MIL-53(Fe) 0.0445 J. Mater. Chem. A 2015, 3, 3074 – 3081

CuTz-1 0.19 Chem. Eur. J. 2018, 24, 16804 – 16813

RGO/Co DND nanocomposite 0.3367 RSC Adv. 2016, 6, 106723– 106731.

porous carbon–Fe2O3 0.2–0.14 ACS Appl. Mater. Interfaces 2013, 5, 9446 – 9453.

Bi(0.25%)/Co(0.25%)–TiO2 0.00315 J. Hazard. Mater. 2009, 164, 615– 620.

hollow Pt/Ag nanosphere 0.047 Appl. Catal. B 2011, 103, 253– 260

MHMCs 0.0513 J. Mater. Chem. A 2015, 3, 3074 – 3081

1 0.1474 This work

Table S2 Crystallographic data and structure refinement details for 1.

Compound 1

formula C38H28Co3N6O14

Fw 969.45

T/K 293(2)

l (Mo–Ka)/Å 0.71073

Crystal system Monoclinic

Space group C2/c

a/Å 28.7693(11)

b/Å 10.0680(4)

c/Å 21.9942(9)

α (deg) 90

β (deg) 128.3810(10)

γ (deg) 90

V (Å3) 4993.9(3)

Z 4

Dcalcd(g cm-3) 1.289

F(000) 1964

μ (mm−1) 1.046

GOF 0.993

R1 (I > 2σ(I)) 0.0320

wR2 (I > 2σ(I)) 0.0973

Table S3 Selected bond lengths (Å) and bond angles (deg) for 1 crystal structure description.

Complex 1

Co(1)-O(6)#1 2.1067(12) Co(2)-N(2) 2.1149(16)

Co(1)-O(6) 2.1068(12) Co(2)-O(1)#4 2.1204(14)

Co(1)-O(4) 2.1088(13) Co(2)-O(7) 2.1237(16)

Co(1)-O(4)#1 2.1088(13) Co(2)-O(2)#4 2.1771(14)

Co(1)-N(3)#2 2.1516(15) Co(2)-N(1)#5 2.2018(17)

Co(1)-N(3)#3 2.1516(15) Co(2)-C(12)#4 2.4810(18)

Co(2)-O(5) 2.0448(13)

O(6)#1-Co(1)-O(6) 180 O(5)-Co(2)-N(2) 98.74(6)

O(6)#1-Co(1)-O(4) 89.49(5) O(5)-Co(2)-O(1)#4 98.84(6)

O(6)-Co(1)-O(4) 90.51(5) N(2)-Co(2)-O(1)#4 162.22(6)

O(6)#1-Co(1)-O(4)#1 90.51(5) O(5)-Co(2)-O(7) 91.89(7)

O(6)-Co(1)-O(4)#1 89.49(5) N(2)-Co(2)-O(7) 87.72(7)

O(4)-Co(1)-O(4)#1 180 O(1)#4-Co(2)-O(7) 89.04(6)

O(6)#1-Co(1)-N(3)#2 86.70(6) O(5)-Co(2)-O(2)#4 159.73(6)

O(6)-Co(1)-N(3)#2 93.30(6) N(2)-Co(2)-O(2)#4 101.46(6)

O(4)-Co(1)-N(3)#2 90.79(6) O(1)#4-Co(2)-O(2)#4 60.91(5)

O(4)#1-Co(1)-N(3)#2 89.21(6) O(7)-Co(2)-O(2)#4 87.39(7)

O(6)#1-Co(1)-N(3)#3 93.30(6) O(5)-Co(2)-N(1)#5 87.91(6)

O(6)-Co(1)-N(3)#3 86.70(6) N(2)-Co(2)-N(1)#5 92.90(7)

O(4)-Co(1)-N(3)#3 89.21(6) O(1)#4-Co(2)-N(1)#5 90.41(6)

O(4)#1-Co(1)-N(3)#3 90.79(6) O(7)-Co(2)-N(1)#5 179.37(7)

N(3)#2-Co(1)-N(3)#3 180.00(5) O(2)#4-Co(2)-N(1)#5 92.60(6)

Symmetry codes: #1 -x+1,-y+1,-z+1 #2 x,-y+1,z-1/2

#3 -x+1,y,-z+3/2 #4 x,y-1,z #5 -x+1/2,y-1/2,-z+1/2

Table S4 Crystallographic parameters of 1-6.

Complex 1 2 3 4 5 6

a/Å 28.769(11) 28.653(6) 29.814(6) 28.824(4) 29.674(6) 29.275(6)

b/Å 10.060(4) 10.126(1) 10.225(2) 10.036(2) 10.425(2) 10.024(2)

c/Å 21.994(9) 21.879(3) 22.453(4) 21.945(4) 22.078(4) 22.060(4)

a/u 90 90 90 90 90 90

b/u 128.381(10) 129.12(4) 129.88(3) 128.78(3) 128.96(4) 129.44(3)

c/u 90 90 90 90 90 90

V/Å3 4993.9 4994.3 4989.6 4987.5 4996.3 4999.6