Massive Scalar Field Quantum Cosmology › ~dark › 2012 › doc › 29 › AM › DMDEMA2012...

Post on 06-Jun-2020

10 views 0 download

Transcript of Massive Scalar Field Quantum Cosmology › ~dark › 2012 › doc › 29 › AM › DMDEMA2012...

Massive Scalar Field Quantum Cosmology

Sang Pyo Kim Kunsan National University

3rd International Workshop on

Dark Matter, Dark Energy and Matter-Antimatter Asymmetry

December 29, 2012

Outline • Motivations

– Why Quantum Cosmology? – Why Massive Scalar Field Quantum Cosmology?

• Quantum Cosmology • Quantum-Classical Transition • Second Quantized Universes • Third Quantization • Conclusion

Why Quantum Cosmology?

Big Bang as an Ingredient of Cosmology

• The singularity theorem implies the Big Bang (BB) [Hawking, Penrose, Proc. R. Soc. Lond. A 314 (‘70)].

• Inflationary spacetimes have the singularity [Borde, Guth, Vilenkin, PRL 90 (‘03)].

• What is the spacetime geometry including the BB? • How to quantize the spacetime as well as matter

fields, that is, what is quantum gravity and quantum cosmology?

• How do a classical universe and the unitary quantum field theory emerge from quantum cosmology?

Why Massive Scalar Field Quantum Cosmology?

Single-Field Inflation Models 7-Year WMAP

[Astrophys. J. Suppl. 192 (‘11)] SPT

[arXiv:1210.7231]

9-Year WMAP [arXiv:1212.5226]

R2 Inflation Model • Starobinsky’s R2 inflation model ( ) [PLB 91 (’80)]

: a de Sitter-type acceleration . • Mukhanov and Chibisov [JETP Lett 33 (‘81)]:

– approximately scale-invariant quantum fluctuations

– N = number of e-folds of expansion between the end of

inflation and the epoch at which a fluctuation with kWMAP left the horizon.

• Whitt [PLB 145 (‘84)] and Maeda [PRD 37 (‘87)]: equivalent to a scalar field under a conformal transformation

Nkdkdn R

s2

ln)(ln1

WMAP

2

−=∆

=−

2RR α+

)21ln(2/3,)21(~ RgRg αα µνµν +=Ψ+=

Quantum Corrections to EH Action • A charged scalar field in (D=d+1)-dimensional curved spacetime

• The effective action in Schwinger-DeWitt proper time integral

• The perturbative one-loop corrections to Einstein-Hilbert action

)(,)(,0)( 2 xiqADmDDxHxH µµµµµ −∂=+−==Φ

);',()4)((

)(21

'||)(

1)(2

2/)1(0

1

0

1

2

isxxFsis

eisdgxd

xexis

isdgxdiW

d

simd

isHd

+

−∞+

−∞+

∫∫

∫∫

−=

−−=

π

( )∫ −+−=

−++==

µνµν

µναβµναβ

µνµν

µναβµναβ

µµ

RRRRRg

RRRRRRfRf

4numberEuler 180

1180

1121

301,

2

2;;21

One-Loop Action for dS • de Sitter space with the metric

• Bogoliubov coefficients for a massive scalar field

22

222 )(cosh

ddH

Htdtds Ω+−=

4)1(,

)2/1()2/()()1(

,)2/1()2/(

)()1(

22

0

dR

mdddldl

ii

Zlidlidl

ii

l

l

−+

=−−Γ+Γ

Γ−Γ=

∈−−−Γ−+Γ

−Γ−Γ=

γγγβ

γγγγα

One-Loop Action for dS • Vacuum polarization and vacuum persistence from

in-out formalism [SPK, arXiv:1008.0577]

• One loop action is related to f(R)-gravity with all coefficients for higher curvature terms determined.

( )

−−+=

+=

+==

∫∑∞ −

)2/sin()2/cos()2/)12cos(()(

1ln)(Im2,)sinh(

)2/(sin||

0states

sceff

scsceff

22sc

sssdl

sedsPRW

NRLdlN

s

lll

γ

πγπβ

Hartle-Hawking No-Boundary Wave Function

Euclidean solutions for a FRW coupled to a massive field scalar [Hawking, NPB 239 (1984)]

Inflation with Negative Λ [Hartle, Hawking, Hertog, arXiv:1205.3807,1207.6653]

• Negative Λ and massive scalar field with negative mass

• Phase transition from AdS to dS

• The wave function is peaked around the classical

trajectories.

22

24

negative

222 1)2( φπφπa

kaama +−+Λ=

00 22 ≥⇒≤ aa ππ

What is Quantum Cosmology?

ADM Formalism • Arnwitt-Deser-Misner formalism: foliate a globally

hyperbolic spacetime manifold by spacelike 3-surfaces

• The Hamiltonian for gravity and matter fields

orshift vect&function lapse

2)( 222

==

++−−=

i

jiiji

ii

NNdxdxhdtdxNdtNNNds

[ ]

( ) form) lfundamenta second:(16

,2)(

)'()'()()'()()'()(2

1)',(

),,()2(16

)'()'()()',(16'

][

2/12

02/1|

32/1

003

232/123

0

03

ijijijPijiijj

i

klijjkiljlikijkl

ijPklij

ijklP

ii

KKhKhmThxH

xxxhxhxhxhxhxhh

xxG

hTRmxxhxxxxGmxdH

HNNHxdH

−−=−=

−−+=

+Λ+−−+=

+=

∫−

πππ

δ

πφπ

δπππ φ

Wheeler-DeWitt Equation • The WDW equation from the super-Hamiltonian

constraint and/or the super-momentum constraints via Dirac quantization:

• Quantum cosmology necessarily includes quantum

fluctuations from spacetime and matter fields.

ij

ij

i

ijP

klijijkl

P

Thxhi

xH

hi

TRmxxh

xhxhxxG

mxdH

02/1

003

232/1

23

0

|)(

2)(

),,()2(16

)'(

)'()()',(16'

−=

+Λ+−−+

−= ∫

δδ

δφδφ

πδ

δδ

δδπ

Quantum-Classical Transition

From QG to SQG to CG

Classical Gravity

Inflationary models

Semiclassical Quantum Gravity

QFT in curved spacetime, Hawking radiation, pair

production

Quantum Gravity

WDW, HH wave function, tunneling wave function µνµν π TGG ˆ8ˆ =

µνµνµν π TGGGG ˆ8][QC =+

( )][8][ QCQC µνµνµνµν π TTGGGG +=+

0/1 2P →= mG

0→

de Broglie-Bohm Pilot-Wave Theory

• In the causal interpretation, a particle has a definite (suitable) path that is affected by the wave function

• In a semiclassical regime, where

ψψψ Vmt

i +∇−=∂∂ 2

2

2

( )

( )

===⋅∇+∂∂

∇−==++∇+

∂∂

mSvFv

t

FF

mVVVS

mtS

,,0

QM) ofpart (imaginaryequation continuity2

,021

QM) ofpart (realequation Jacobi-Hamilton

22

22

QQ2

ρρρ

Si

eF =ψ

Quantum FRW Universe (minisuperspace model)

• The metric for Friedmann-Robertson-Walker universe

• The WDW equation for a FRW universe with a minimal

scalar field (inflaton) up to a factor ordering

23

2222 )( Ω+−= dtadtNds

( )

==Λ−=

+−

∂∂

π

φφπφ

43,1,

21)(

0,),(ˆ)(2

242

2

22

PG

mG

mMcakaaV

aHaMVaM

Wave Packet for FRW with a Minimal Scalar

A closed universe (k=1), m = 6, and n =120 (harmonic quantum number) [Fig. from Kiefer, PRD 38 (‘88)]

Pilot-Wave Theory and Born-Oppenheimer Idea

• The wave functions are peaked around some trajectories (wave packets) and allow the pilot-wave theory

• Apply the Born-Oppenheimer idea that separates a slow moving massive particle (M=Planck mass squared) from a fast moving light particle (matter field) and then expand the quantum state for the fast moving variable by a certain basis to be determined

( ) ( )ijaaaa hhhhiHhMVM

==Ψ

−+−∇− ,0,),,(ˆ)(

2 G2

2

φδφδφ

( ) ( )( ) ( )∑ Φ=Φ

Φ=Ψ

kakaka

aaa

hhch

hhh

,)(,

,)(,

φφ

φψφ

Semiclassical Quantum Gravity [SPK, PRD 52 (‘95); CQG 13 (‘96); PRD 55 (‘97)]

• Apply the de Broglie-Bohm pilot-wave theory to the gravity part only

• Then, in a semiclassical regime, the WDW equation is equivalent to

/)()()( ahiSaa ehFh =ψ

( ) ( )

( )

∇⋅

∇=

Φ∇Φ=ΦΦ=

=+∇⋅∇

+∇

=−∇

−+−∇

∑k n

knk

n

nann

akanankakanank

nn

nnnna

ccAi

cc

FFhQ

hhihAhHhhH

QSFFS

QMF

FM

HhMVSM

:)(

),(),(:)(;),(ˆ),(:)(

0Im21

0Re2

)(2

1

2

222

G2

φφφφ

Semiclassical Quantum Gravity

• In quantum gravity, time is NOT a priori given since the WDW equation is a constraint equation (problem of time). Thus, time should be defined from the wave function itself.

• In the semiclassical quantum gravity, time emerges from the wave packet and the cosmological time is defined as the directional derivative of the action, not necessarily a classical one, along the trajectory

∇⋅∇= )(1: ahS

Mδτδ

Semiclassical Quantum Gravity

• The matter field obeys the Heisenberg (matrix) equation

• The unitarity of the quantum state of matter field is preserved.

),(),(2:)(

),(),(:)(;),(ˆ),(:)(

2

22

2

akannknkank

akanankakanank

knk

nkkk

nkknk

nkn

hhAih

hhihAhHhhH

cM

cASM

cHci

φφδ

φφφφ

δτδ

Φ∇Φ+∇⋅−∇=Ω

Φ∇Φ=ΦΦ=

Ω−⋅∇−= ∑∑∑≠≠

==⋅+

)()(

)(,1)()( 2

1

ττ

τττ cc

CCC

Scalar Field Cosmology

• The extended superspace for a FRW with a minimal scalar and the cosmological time:

• The Heisenberg matrix equation for the scalar field

∂∂

−=∂

∂∂∂

∂∂

−=∂∂

+−=

aaS

Maa

aaaS

Ma

daadads)(1)(,)(1

2322

ττ

τ

φ

Φ

∂∂

−∂∂

Φ+∂∂

∂∂

−∂∂

−=Ω

Φ∂∂

Φ=ΦΦ=

Ω−−=∂∂

∑∑∑≠≠

knnknknk

knnkknnk

knk

nkkk

nkknk

nkn

aaiB

aa

aa

iaBHaH

cMa

cBcHci

τττδ

τττ

τττ

τ

2

2

2

2

2

2

21:))((

:))((;ˆ:))((

2

Scalar Field Cosmology

• The semiclassical Friedmann equation

• The effective energy density

( ))Im()3/4(2

1/:

132)Re(

34

38

22

22

2

2

2

322

2

nnPnn

k n

knk

n

nnn

nnnnP

nnnnP

nnP

Rmaaaa

FaFU

ccBi

ccR

Ua

Uam

RUaam

Hama

kaa

π

πππ

+−=

∂∂=

−=

++−=Λ−+

++−= nnnn

Pnnnn

Pnnnn U

aU

amRU

aamH

132)Re(

34 2

2

2

2

2 ππρ

Massive Scalar Field Cosmology

• The semiclassical Friedmann equation with a massive scalar field at the lowest order of

( )

[ ] 03;21

21;0

132

38

22ˆ

2*2*3

2)0()0(

)0(2)0(2

2

322

2

232

2

2

3

2

=+++

+=

−==

++=Λ−+

+∂∂

−=

ϕϕϕϕϕϕϕ

ππ

φφ

maamnaH

aaaaUR

Ua

Uam

Hama

kaa

ama

H

nn

nnnn

nnnnP

nnP

M/

Back-reaction from Quantum Gravity • Explain the back-reaction of de Sitter radiation

[J-A. Gu, SPK, C-M. Shen, arXiv:1210.7902] – dS temperature increased by the ratio of the dS scale

to the Planck scale. – Equivalent to the back-reaction of Hawking radiation

in a de Sitter Schwarzschild black hole [Greene et al, JHEP04 (‘06)057].

( )][8][ QCQC µνµνµνµν π TTGGGG +=+

Second Quantized Universes

Scalar Field Quantum Cosmology • The ADM formalism for a FRW geometry

• The WDW equation (Dirac quantization of Hamiltonian

constraint) for a FRW universe minimally coupled to a single-field inflaton (scalar field); the WDW equation is already second quantized

23

2222 )( Ω+−= dtadtNds

( ) ( )

====Λ−=

−+

∂∂

−∂∂

116,2)(

0,)(21

2242

42

2

22

2

PPG

G

mlcakaaV

aaVVaaa

π

φφφ

Quantum Universes in the Superspace

• The supermetric for FRW geometry and a minimal scalar • The Hamiltonian constraint and the WDW equation

• A Cauchy initial value problem w.r.t. the scale factor a and

a prescription for the boundary condition.

2222 φdadads +−=

( ) ( )

[ ] ( )42

2

2

22

22

42

Hpart fieldscalar

622

Hpart gravity

2

2)(,1

0,)(2)(

0)(21)(),(MG

akaaVaa

aVaaV

Vaa

aVaH

G

G

Ga

Λ−=∂∂

+∂∂

−=∇

=Ψ+−∇−

=+++−=

φ

φφ

φππφ φ

Quantum Universes in the Superspace [SPK, Page, PRD 45 (‘92); SPK, PRD 46 (‘92)]

• The scalar field for single-field inflation model • The eigenfunctions and the Symanzik scaling law

• The coupling matrix among the energy eigenfunctions

)2/()( 22 pV p

pφλφ =

( )( ) ( )( )φλλφ

ελ

φφφ

)1/(162

)1(4/162

)1/(162

//),(

/)(

),()(),(),(

++

+

=

Φ=Φ

ppn

ppn

np

pn

nnnM

paFpaa

paaE

aaEaaH

( )( ) 2)()()1(4/3)(

),()(),(

ςςςςεε

φφ

nmnmmn FFdapa

aaaa

∫−+=Ω

ΦΩ=Φ∂∂

Quantum Universes in the Superspace [SPK, Page, PRD 45 (‘92); SPK, PRD 46 (‘92)]

• The gravitational part of the WDW equation

• The transition matrix and the Cauchy problem

0)()(1)()(2)()(

)(),(),(

222

2

=

Ω−Ω−Ω−+−

⋅Φ=Ψ

aaa

adada

aaEaV

dad

aaa

G

T

ψ

ψφφ

−=

Ω=Φ=Ψ

daada

TaEVT

I

daada

dad

adaaTaaTaa

G

aT

/)()(

0

0

/)()(

)'('exp)(;)()(),(),(

21

ψψ

ψψ

ψφφ

Quantum Universes in the Superspace [SPK, Page, PRD 45 (‘92); SPK, PRD 46 (‘92)]

• The two-component wave function

• The off-diagonal components are the gravitational part

equation only with . • The continuous transitions among energy eigenfunctions.

Ω−

Ω×

ΦΦ

=

∂Ψ∂

Ψ

∫00

02 /)(

)('

)'('/)'()'(

exp

),(00),(

/),(),(

daada

daaaEaVIa

T

aa

aaa

G

T

T

ψψ

φφ

φφ

2/)( aEaVG −

Third Quantization

Third Quantization in 3+1 Dimensions

Second quantization Third quantization Particle Universe

Interaction Vertex Topology Change Field Third Quantized Field

Spacetime Superspace of Three Geometries

Free Laplacian Wheeler-DeWitt Operator Vacuum Void

[Strominger, “Baby Universes,’’ in Quantum Cosmology and Baby Universes edited by S. Coleman et al (World Scientific, 1991)]

Hilbert Space for Quantum Universes • The inner product for the WDW equation [SPK, J. Kim,

K.S. Soh, NPB 406 (‘93); SPK, Y.H. Lee, JKPS 26 (‘93)]

• The Feshbach-Villars’ first order equation for the WDW

equation guarantees the inner product [Mostafazadeh, JMP 39 (‘98)].

0,,

),(),(*

=ΨΨ−=ΨΨ=ΨΨ

Ψ∂Ψ=ΨΨ ∫Σβααββααββα

βαβα

δδ

φφφ

IIIIIIIII

a aada

∂Ψ∂

−Ψ

∂Ψ∂

+−−−−+

=

∂Ψ∂

−Ψ

∂Ψ∂

∂∂

ai

ai

DDDD

ai

ai

a )1(1)1(1

21

Hilbert Space for Quantum Universes • The wave function is positive/negative w.r.t.

so that the universe is quantized [Banks, NPB 309 (‘88); McGuigan, PRD 38 (‘88); Giddings, Strominger, NPB 321 (‘89); Peleg, CQG 8 (‘91); Castagnino et al, 10 (‘93), SPK et al (‘93)]

• The operator creates a universe in the wave function , and so on. • The Hilbert space consists of the void of no-universe, one-

universe H and multi-universes.

+Ψ+Ψ=Ψ ∑ αααα

α φφφ IIII AaAaa ),(),(),( *

*/ αα II ΨΨ ai∂

⊕⊗⊕⊕= )()( HHHCHF

+αIA

*αI

Ψ

Third Quantization • The WDW equation from the third quantized Hamiltonian

• A massless field is a sum of a-dependent oscillators [Hosoya,

Morikawa, PRD 39 (‘89); Abe, PRD 47 (‘93); Horiguchi, 48 (‘93)] and is a tachyonic state for the closed universe [SPK, arXiv:1212.5355].

• The third quantization of a massive field is analogous to the second quantized charged KG in a time-dependent, homogeneous, magnetic field .

( ) ( )( )

Ψ−+

∂Ψ∂

+

∂Ψ∂

−= ∫ 242

2

2

21 aVVaaa

dadS Gφφ

φ

)2/)(),(( rtBrtA ×=

Third Quantization • Expand the wave function by the energy eigenfunctions of

Hamiltonian, , for the scalar field to obtain the third quantized Hamiltonian

• The massive scalar quantum cosmology can be solved in the sense that the coupling matrix Ω and the energy-eigenvalue matrix E are explicitly known.

)()(/)(

)(21)(

21)(

)O(a :universe late

2O(1/a) :universeearly very

1)2p)/(p-(4

aaaa

aEa

aaH TTT

ψψπ

ψψψπππ

Ω+∂∂=

+Ω−⋅=

+

)(),(),( aaa T ψφφ

⋅Φ=Ψ

WDW Equation vs KG Equation in B • The WDW equation for the FRW universe with a massive

scalar field

• The transverse motion of a charged scalar in a temporal,

homogeneous, magnetic field

( ) ( ) 0),(1)( 22622

2 =Ψ

+++− φφππ φ ama

aaVGa

( ) 0),()(2

)( 2222

22

2

++

++

∂∂

⊥⊥⊥⊥ xtkmLtqBxtqBpt zz

2/)(),( rtBrtA ×=

Conclusion • Quantum cosmology may be a consistent framework for

studying quantum fluctuations of spacetime and matter fields.

• Semiclassical and classical cosmology with the back-reaction can be derived from quantum cosmology.

• The ΛCDM model with a massive scalar field seems to be viable with the current CMB data (WMAP 7, SPT, etc.).

• Can massive scalar field quantum cosmology predict all observational data (WMAP 9)?