MA/CS 6a - math.caltech.edu

Post on 16-Oct-2021

6 views 0 download

Transcript of MA/CS 6a - math.caltech.edu

11/13/2016

1

Ma/CS 6aClass 20: Subgroups, Orbits, and Stabilizers

By Adam Sheffer

A Group

A group consists of a set ๐บ and a binary operation โˆ—, satisfying the following.

โ—ฆ Closure. For every ๐‘ฅ, ๐‘ฆ โˆˆ ๐บ๐‘ฅ โˆ— ๐‘ฆ โˆˆ ๐บ.

โ—ฆ Associativity. For every ๐‘ฅ, ๐‘ฆ, ๐‘ง โˆˆ ๐บ๐‘ฅ โˆ— ๐‘ฆ โˆ— ๐‘ง = ๐‘ฅ โˆ— ๐‘ฆ โˆ— ๐‘ง .

โ—ฆ Identity. There exists ๐‘’ โˆˆ ๐บ, such that for every ๐‘ฅ โˆˆ ๐บ

๐‘’ โˆ— ๐‘ฅ = ๐‘ฅ โˆ— ๐‘’ = ๐‘ฅ.

โ—ฆ Inverse. For every ๐‘ฅ โˆˆ ๐บ there exists ๐‘ฅโˆ’1 โˆˆ ๐บsuch that ๐‘ฅ โˆ— ๐‘ฅโˆ’1 = ๐‘ฅโˆ’1 โˆ— ๐‘ฅ = ๐‘’.

11/13/2016

2

Subgroups

A subgroup of a group ๐บ is a group with the same operation as ๐บ, and whose set of members is a subset of ๐บ.

Find a subgroup of the group of integers under addition.

โ—ฆ The subset of even integers.

โ—ฆ The subset โ€ฆ ,โˆ’2๐‘Ÿ,โˆ’๐‘Ÿ, 0, ๐‘Ÿ, 2๐‘Ÿ, . . for any integer ๐‘Ÿ > 1.

Subgroups of a Symmetry Group

Problem. Find a subgroup of the symmetries of the square.

No action Rotation 90โˆ˜ Rotation 180โˆ˜ Rotation 270โˆ˜

Vertical flip Horizontal flip Diagonal flip Diagonal flip 2

11/13/2016

3

Subgroups of a Symmetry Group

Problem. Find a subgroup of the subgroup.

No action Rotation 90โˆ˜ Rotation 180โˆ˜ Rotation 270โˆ˜

Vertical flip Horizontal flip Diagonal flip Diagonal flip 2

Subgroups of a Symmetry Group

No action Rotation 90โˆ˜ Rotation 180โˆ˜ Rotation 270โˆ˜

Vertical flip Horizontal flip Diagonal flip Diagonal flip 2

11/13/2016

4

Subgroup Conditions

Problem. Let ๐บ be a group, and let ๐ป be a non-empty subset of ๐บ such that

โ—ฆ C1. If ๐‘ฅ, ๐‘ฆ โˆˆ ๐ป then ๐‘ฅ๐‘ฆ โˆˆ ๐ป.

โ—ฆ ๐‚๐Ÿ. If ๐‘ฅ โˆˆ ๐ป then ๐‘ฅโˆ’1 โˆˆ ๐ป.

Prove that ๐ป is a subgroup.

โ—ฆ Closure. By C1.

โ—ฆ Inverse. By C2.

โ—ฆ Associativity. By the associativity of ๐บ.

โ—ฆ Identity. By C2, ๐‘ฅ, ๐‘ฅโˆ’1 โˆˆ ๐ป. By C1, we have 1 = ๐‘ฅ๐‘ฅโˆ’1 โˆˆ ๐ป.

Finite Subgroup Conditions

Problem. Let ๐บ be a finite group, and let ๐ป be a non-empty subset of ๐บ such that

โ—ฆ C1. If ๐‘ฅ, ๐‘ฆ โˆˆ ๐ป then ๐‘ฅ๐‘ฆ โˆˆ ๐ป.

โ—ฆ ๐‚๐Ÿ. If ๐‘ฅ โˆˆ ๐ป then ๐‘ฅโˆ’1 โˆˆ ๐ป.

Prove that ๐ป is a subgroup.

Proof. Consider ๐‘ฅ โˆˆ ๐ป.

Since ๐บ is finite, the series 1, ๐‘ฅ, ๐‘ฅ2, ๐‘ฅ3, โ€ฆ has two identical elements ๐‘ฅ๐‘– = ๐‘ฅ๐‘— with ๐‘– < ๐‘—.

Multiply both sides by ๐‘ฅโˆ’๐‘–โˆ’1 (in ๐บ) to obtain๐‘ฅโˆ’1 = ๐‘ฅ๐‘—โˆ’๐‘–โˆ’1 = ๐‘ฅ๐‘ฅ๐‘ฅโ‹ฏ๐‘ฅ โˆˆ ๐ป.

11/13/2016

5

Lagrangeโ€™s Theorem

Theorem. If ๐บ is a group of a finite order ๐‘› and ๐ป is a subgroup of ๐บ of order ๐‘š, then ๐‘š|๐‘›.

โ—ฆ We will not prove the theorem.

Example. The symmetry group of the square is of order 8.

โ—ฆ The subgroup of rotations is of order 4.

โ—ฆ The subgroup of the identity and rotation by 180โˆ˜ is of order 2.

Reminder: Parity of a Permutation

Theorem. Consider a permutation ๐›ผ โˆˆ ๐‘†๐‘›. Then

โ—ฆ Either every decomposition of ๐›ผ consists of an even number of transpositions,

โ—ฆ or every decomposition of ๐›ผ consists of an odd number of transpositions.

1 2 3 4 5 6 :

โ—ฆ 1 3 1 2 4 6 4 5 .

โ—ฆ 1 4 1 6 1 5 3 4 2 4 1 4 .

11/13/2016

6

Subgroup of ๐‘†๐‘›

Consider the group ๐‘†๐‘›:

โ—ฆ Recall. A composition of two even permutations is even.

โ—ฆ The subset of even permutations is a subgroup called the alternating group ๐ด๐‘›.

โ—ฆ Recall. Exactly half of the permutations of ๐‘†๐‘›are even. That is, the order of ๐ด๐‘› is ๐‘›!/2.

Application of Lagrangeโ€™s Theorem

Problem. Let ๐บ be a finite group of order ๐‘› and let ๐‘” โˆˆ ๐บ be of order ๐‘š. Prove that

๐‘š|๐‘› and ๐‘”๐‘› = 1.

Proof.

โ—ฆ Notice that 1, ๐‘”, ๐‘”2, โ€ฆ , ๐‘”๐‘šโˆ’1 is a cyclic subgroup of order ๐‘š.

โ—ฆ By Lagrangeโ€™s theorem ๐‘š|๐‘›.

โ—ฆ Write ๐‘› = ๐‘š๐‘˜ for some integer ๐‘˜. Then๐‘”๐‘› = ๐‘”๐‘š๐‘˜ = ๐‘”๐‘š ๐‘˜ = 1.

11/13/2016

7

Groups of a Prime Order

Claim. Every group ๐บ of a prime order ๐‘ is isomorphic to the cyclic group ๐ถ๐‘.

Proof.

โ—ฆ By the previous slide, every element of ๐บ โˆ– 1 is of order ๐‘.

โ—ฆ ๐บ is cyclic since any element of ๐บ โˆ– 1generates it.

Equivalence Relations

Recall. A binary relation ๐‘… on a set ๐‘‹ is an equivalence relation if it satisfies the following properties.

โ—ฆ Reflexive. For any ๐‘ฅ โˆˆ ๐‘‹, we have ๐‘ฅ๐‘…๐‘ฅ.

โ—ฆ Symmetric. For any ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘‹,

๐‘ฅ๐‘…๐‘ฆ if and only if ๐‘ฆ๐‘…๐‘ฅ.

โ—ฆ Transitive. If ๐‘ฅ๐‘…๐‘ฆ and ๐‘ฆ๐‘…๐‘ง then ๐‘ฅ๐‘…๐‘ง.

11/13/2016

8

Example: Equivalence Relations

Problem. Consider the relation of congruence ๐‘š๐‘œ๐‘‘ 30, defined over the set of integers โ„ค. Is it an equivalence relation?

Solution.

โ—ฆ Reflexive. For any ๐‘ฅ โˆˆ โ„ค, we have ๐‘ฅ โ‰ก ๐‘ฅ ๐‘š๐‘œ๐‘‘ 30.

โ—ฆ Symmetric. For any ๐‘ฅ, ๐‘ฆ โˆˆ โ„ค, we have ๐‘ฅ โ‰ก ๐‘ฆ ๐‘š๐‘œ๐‘‘ 30 iff ๐‘ฆ โ‰ก ๐‘ฅ ๐‘š๐‘œ๐‘‘ 30.

โ—ฆ Transitive. If ๐‘ฅ โ‰ก ๐‘ฆ ๐‘š๐‘œ๐‘‘ 30 and ๐‘ฆ โ‰ก ๐‘ง ๐‘š๐‘œ๐‘‘ 30 then ๐‘ฅ โ‰ก ๐‘ง ๐‘š๐‘œ๐‘‘ 30.

Permutations of Objects

We have a set of numbers ๐‘‹ = 1,2,3, โ€ฆ , ๐‘› and a permutation group ๐บ of ๐‘‹.

For example, ๐‘‹ = 1,2,3,4,5,6

๐บ = id, 1 2 , 3 4 , 1 2 3 4

11/13/2016

9

Equivalence Via Permutation Groups Let ๐บ be a group of permutations of the

set ๐‘‹. We define a relation on ๐‘‹:๐‘ฅ~๐‘ฆ โ‡” ๐‘” ๐‘ฅ = ๐‘ฆ for some ๐‘” โˆˆ ๐บ.

Claim. ~ is an equivalence relation.

โ—ฆ Reflexive. The group ๐บ contains the identity permutation id. For every ๐‘ฅ โˆˆ ๐‘‹ we have id ๐‘ฅ = ๐‘ฅ and thus ๐‘ฅ~๐‘ฅ.

โ—ฆ Symmetric. If ๐‘ฅ~๐‘ฆ then ๐‘” ๐‘ฅ = ๐‘ฆ for some ๐‘” โˆˆ ๐บ. This implies that ๐‘”โˆ’1 โˆˆ ๐บ and ๐‘ฅ = ๐‘”โˆ’1 ๐‘ฆ . So ๐‘ฆ~๐‘ฅ.

Equivalence Via Permutation Groups Let ๐บ be a group of permutations of the

set ๐‘‹. We define a relation on ๐‘‹:๐‘ฅ~๐‘ฆ โ‡” ๐‘” ๐‘ฅ = ๐‘ฆ for some ๐‘” โˆˆ ๐บ.

Claim. ~ is an equivalence relation.

โ—ฆ Transitive. If ๐‘ฅ~๐‘ฆ and ๐‘ฆ~๐‘ง then ๐‘” ๐‘ฅ = ๐‘ฆ and โ„Ž ๐‘ฆ = ๐‘ง for ๐‘”, โ„Ž โˆˆ ๐บ. Then โ„Ž๐‘” โˆˆ ๐บ and โ„Ž๐‘” ๐‘ฅ = ๐‘ง, which in turn implies ๐‘ฅ~๐‘ง.

11/13/2016

10

Orbits

Given a permutation group ๐บ of a set ๐‘‹, the equivalence relation ~ partitions ๐‘‹into equivalence classes or orbits.

โ—ฆ For every ๐‘ฅ โˆˆ ๐‘‹ the orbit of ๐‘ฅ is ๐บ๐‘ฅ = ๐‘ฆ โˆˆ ๐‘‹ | ๐‘ฅ~๐‘ฆ= ๐‘ฆ โˆˆ ๐‘‹ | ๐‘” ๐‘ฅ = ๐‘ฆ for some ๐‘” โˆˆ ๐บ .

Example: Orbits

Let ๐‘‹ = 1,2,3,4,5 and let๐บ = id, 1 2 , 3 4 , 1 2 3 4 .

What are the orbits that ๐บ induces on ๐‘‹?

โ—ฆ ๐บ1 = ๐บ2 = 1,2 .

โ—ฆ ๐บ3 = ๐บ4 = 3,4 .

โ—ฆ ๐บ5 = 5 .

11/13/2016

11

Simple Groups

A trivial group is a group that contains only one element โ€“ an identity element.

A simple group is a non-trivial group that does not contain any โ€œwell-behavedโ€ subgroups in it.

The finite simple groups are, in a certain sense, the โ€œbasic building blocksโ€ of all finite groups.

โ—ฆ Somewhat similar to the way prime numbers are the basic building blocks of the integers.

Classification of Finite Simple Groups

โ€œOne of the most important mathematical achievements of the 20th century was the collaborative effort, taking up more than 10,000 journal pagesโ€ (Wikipedia).

Written by about 100 authors!

Theorem. Every finite simple group is isomorphic to one of the following groups:

โ—ฆ A cyclic group.

โ—ฆ An alternating group.

โ—ฆ A simple Lie group.

โ—ฆ One of the 26 sporadic groups.

11/13/2016

12

The Monster Group

One of the 26 sporadic groups is the monster group.

It has an order of 808,017,424,794,512,875,886,459,904,961,710,757,005,754,368,000,000,000.

The 6 sporadic groups that are not โ€œcontainedโ€ in the monster group are called the happy family.

Stabilizers

Let ๐บ be a permutation group of the set ๐‘‹.

Let ๐บ ๐‘ฅ โ†’ ๐‘ฆ denote the set of permutations ๐‘” โˆˆ ๐บ such that ๐‘” ๐‘ฅ = ๐‘ฆ.

The stabilizer of ๐‘ฅ is๐บ๐‘ฅ = ๐บ ๐‘ฅ โ†’ ๐‘ฅ .

11/13/2016

13

Example: Stabilizer

Consider the following permutation group of {1,2,3,4}:

๐บ = {id, 1 2 3 4 , 1 3 2 4 , 1 4 3 2 ,2 4 , 1 3 , 1 2 3 4 , 1 4 2 3 }.

The stabilizers are

โ—ฆ ๐บ1 = id, 2 4 .

โ—ฆ ๐บ2 = id, 1 3 .

โ—ฆ ๐บ3 = id, 2 4 .

โ—ฆ ๐บ4 = id, 1 3 .

Stabilizers are Subgroups

Claim. ๐บ๐‘ฅ is a subgroup of ๐บ.

โ—ฆ Closure. If ๐‘”, โ„Ž โˆˆ ๐บ๐‘ฅ then ๐‘” ๐‘ฅ = ๐‘ฅ and โ„Ž ๐‘ฅ = ๐‘ฅ. Since ๐‘”โ„Ž ๐‘ฅ = ๐‘ฅ we have ๐‘”โ„Ž โˆˆ ๐บ๐‘ฅ.

โ—ฆ Associativity. Implied by the associativity of ๐บ.

โ—ฆ Identity. Since id ๐‘ฅ = ๐‘ฅ, we have id โˆˆ ๐บ๐‘ฅ.

โ—ฆ Inverse. If ๐‘” โˆˆ ๐บ๐‘ฅ then ๐‘” ๐‘ฅ = ๐‘ฅ. This implies that ๐‘”โˆ’1 ๐‘ฅ = ๐‘ฅ so ๐‘”โˆ’1 โˆˆ ๐บ๐‘ฅ.

11/13/2016

14

Cosets

Let ๐ป be a subgroup of the group ๐บ. The left coset of ๐ป with respect to ๐‘” โˆˆ ๐บ is

๐‘”๐ป = ๐‘Ž โˆˆ ๐บ | ๐‘Ž = ๐‘”โ„Ž for some โ„Ž โˆˆ ๐ป .

Example. The coset of the alternating group ๐ด๐‘› with respect to the transposition 1 2 โˆˆ ๐‘†๐‘› is the subset of odd permutations of ๐‘†๐‘›.

๐บ ๐‘ฅ โ†’ ๐‘ฆ are Cosets

Claim. Let ๐บ be a permutation group and let โ„Ž โˆˆ ๐บ ๐‘ฅ โ†’ ๐‘ฆ . Then

๐บ ๐‘ฅ โ†’ ๐‘ฆ = โ„Ž๐บ๐‘ฅ .

Proof.

โ—ฆ โ„Ž๐บ๐‘ฅ โŠ† ๐บ ๐‘ฅ โ†’ ๐‘ฆ . If ๐‘Ž โˆˆ โ„Ž๐บ๐‘ฅ, then ๐‘Ž = โ„Ž๐‘” for some ๐‘” โˆˆ ๐บ๐‘ฅ. We have ๐‘Ž โˆˆ ๐บ ๐‘ฅ โ†’ ๐‘ฆ since

๐‘Ž ๐‘ฅ = โ„Ž๐‘” ๐‘ฅ = โ„Ž ๐‘ฅ = ๐‘ฆ.

โ—ฆ ๐บ ๐‘ฅ โ†’ ๐‘ฆ โŠ† โ„Ž๐บ๐‘ฅ. If ๐‘ โˆˆ ๐บ ๐‘ฅ โ†’ ๐‘ฆ then โ„Žโˆ’1๐‘ ๐‘ฅ = โ„Žโˆ’1 ๐‘ฆ = ๐‘ฅ.

That is, โ„Žโˆ’1๐‘ โˆˆ ๐บ๐‘ฅ, which implies ๐‘ โˆˆ โ„Ž๐บ๐‘ฅ.

11/13/2016

15

Sizes of Cosets and Stabilizers

Claim. Let ๐บ be a permutation group on ๐‘‹and let ๐บ๐‘ฅ be the stabilizer of ๐‘ฅ โˆˆ ๐‘‹. Then

๐บ๐‘ฅ = โ„Ž๐บ๐‘ฅ for any โ„Ž โˆˆ ๐บ.

โ—ฆ Proof. By the Latin square property of ๐บ.

Corollary. The size of ๐บ ๐‘ฅ โ†’ ๐‘ฆ :

โ—ฆ If ๐‘ฆ is in the orbit ๐บ๐‘ฅ then ๐บ ๐‘ฅ โ†’ ๐‘ฆ = ๐บ๐‘ฅ .

โ—ฆ If ๐‘ฆ is not in the orbit ๐บ๐‘ฅ then ๐บ ๐‘ฅ โ†’ ๐‘ฆ = 0.

The End: A Noahโ€™s Ark JokeThe Flood has receded and the ark is safely aground atop Mount Ararat. Noah tells all the animals to go forth and multiply. Soon the land is teeming with every kind of living creature in abundance, except for snakes. Noah wonders why. One morning two miserable snakes knock on the door of the ark with a complaint. โ€œYou havenโ€™t cut down any trees.โ€ Noah is puzzled, but does as they wish. Within a month, you canโ€™t walk a step without treading on baby snakes. With difficulty, he tracks down the two parents. โ€œWhat was all that with the trees?โ€ โ€œAh,โ€ says one of the snakes, โ€œyou didnโ€™t notice which species we are.โ€ Noah still looks blank. โ€œWeโ€™re adders, and we can only multiply using logs.โ€