LPNHE – Université de Paris VI & VII BABAR France. Orsay 20 novembre 2003

Post on 23-Jan-2016

27 views 0 download

Tags:

description

B - DK* - K s p - CP=+/-1. Physique Analyse K+K- Analyse CP=-1 Perspectives. LPNHE – Université de Paris VI & VII BABAR France. Orsay 20 novembre 2003 Guillaume Therin, Jacques Chauveau, Malcolm John Presente par J.C. - PowerPoint PPT Presentation

Transcript of LPNHE – Université de Paris VI & VII BABAR France. Orsay 20 novembre 2003

LPNHE – Université de Paris VI & VII

BABAR France. Orsay 20 novembre 2003

Guillaume Therin, Jacques Chauveau, Malcolm John

Presente par J.C.

Collaboration avec Royal Holloway

P. Jackson, T. Mac Mahon, S. Ricciardi

BB- - DK* DK*- - K Kss- -

CP=+/-1CP=+/-1

PhysiquePhysique

Analyse K+K-Analyse K+K-

Analyse CP=-1Analyse CP=-1

PerspectivesPerspectives

G. Thérin B->DK* 2

Désintégrations des B en D K(*)http://lpnhe-babar.in2p3.fr/DK

A=A* BB

eiB→D0K

B eiA=A*

B*

A(B- →D

0 K- )

A(B+→D0K+)

K+-

Etats propres de CP

BF ≈ 1.5 x 10-4 BF = 3.8 x 10-2

BF = 3.7 x 10-4

Ks0

Ks0

Ks

KK+

BF ≈ 3 x 10-6

B-bu

cu

su

D0

K-Vcb

Vus

A

b

u

uD0

K-su

c Vub B-

BSC SC

DC CA Mauvais signes

• Triangles GLW• Triangles analogues pour ADS• Violation de CP directe,…• ou pas de violation de CP

• Objectif : Contraindre par des canaux sans pingouins.• Méthodes : • GLW prototype, faisable ?, amplitudes très différentes

• ADS très faibles rapports de branchement , amplitudes du même ordre.

Belle : A1 = -0.02+-0.33+-0.07

G. Thérin B->DK* 3

Analyse CP=+1

• Run 1 et 2 D0 -> K+K-

• Comparaisons données Monte Carlo

• Optimisation des coupures

• Statistiques attendues pour une expérience complètement simulée (FSE)

– Signal

– Bruits de fond

– bruit de fond doublement piquant

G. Thérin B->DK* 4

Data Sets

Data Sample Luminosity (fb-1)

00BB

BB 188

184

1250*

16400

CP Cocktail

KK Signal

93.4uds

92.9c

• We have all generic SP4 reconstructed with release 10

• Both data and generic MC taken from the Breco skims

• Enough generic to do a full simulated Experiment

• All yields are normalised to 73.4 fb-1-1

• We have all generic SP4 reconstructed with release 10

• Both data and generic MC taken from the Breco skims

• Enough generic to do a full simulated Experiment

• All yields are normalised to 73.4 fb-1-1

73.4On-Peak Data

8.6Off-Peak Data

G. Thérin B->DK* 5

Cut Optimization

Assumptions :

Method :

Assumptions :

Method :

• Cut variables uncorrelated with mes and E (checked).

• Good agreement between MC and Data

• For the optimization, mes is assumed to be uniform (BKGD) for (5.2 < mes < 5.29) GeV/c2

• Determine - NSIGNAL (signal MC)

- NBKGD (generic udscb)

found in the signal boxsignal box

E (

MeV

)

5.29MES (GeV/c2)

5.20 5.27

40

-40

BF(signal) = 7.10-7

G. Thérin B->DK* 6

No appreciable correlations between DE and All other cuts

Plots done on data with mes < Plots done on data with mes < 5.275.27

Plots done on data with mes < Plots done on data with mes < 5.275.27

G. Thérin B->DK* 7

Plots done on Data with |Plots done on Data with |E| > 0.04E| > 0.04Plots done on Data with |Plots done on Data with |E| > 0.04E| > 0.04

No appreciable correlations between mes and All other cuts

G. Thérin B->DK* 8

Off-peak data compared with generic udsc

Fair agreement between data and new qq MCFair agreement between data and new qq MCFair agreement between data and new qq MCFair agreement between data and new qq MC

G. Thérin B->DK* 9

On-peak data compared with generic

mmeses < 5.27 GeV < 5.27 GeVmmeses < 5.27 GeV < 5.27 GeV

G. Thérin B->DK* 10

Significance versus cut variations

• The vertical black The vertical black bar shows the choice bar shows the choice for the cutfor the cut

• favored loose cutsfavored loose cuts

• The vertical black The vertical black bar shows the choice bar shows the choice for the cutfor the cut

• favored loose cutsfavored loose cuts

G. Thérin B->DK* 11

Cut Optimization plots

Signal Bcgk

G. Thérin B->DK* 12

Cut Values

cutLegendre Fisher|Cos Bmom|

|Cos HEL D0|

|Cos HEL K*|

Mass K*

Mass D0 (s= 6 MeV)Mass Ks (s= 3 MeV)

DOF Ks

PID daughs D0

BKGD B+B-BKGD B0B0BKGD udsBKGD cTotal BackgroundSignalS/sqrt(S+B)opt

value

> 0.35< 75 MeV

0.60.95

15 MeV7 MeV

NotaPion

-

1.5 ± 0.2

0.2 cm

2.2 ± 0.2

1.7 ± 0.04

14.3 ± 0.77.9 ± 0.2

3.6 ± 0.47.0 ± 0.5

MC Signal MC Signal = 16.4 = 16.4 0.4 0.4 % %

MC Signal MC Signal = 16.4 = 16.4 0.4 0.4 % %

Legendre Fisher : Legendre Fisher :

F = 0.53 - 0.60*L0 + 1.27*L2F = 0.53 - 0.60*L0 + 1.27*L2

Legendre Fisher : Legendre Fisher :

F = 0.53 - 0.60*L0 + 1.27*L2F = 0.53 - 0.60*L0 + 1.27*L2

Best Candidate :Best Candidate :

2(m(mD0D0,m,mKsKs))

14.5% selected 14.5% selected events have events have more than 1 more than 1 candidate candidate

Best Candidate :Best Candidate :

2(m(mD0D0,m,mKsKs))

14.5% selected 14.5% selected events have events have more than 1 more than 1 candidate candidate

G. Thérin B->DK* 13

Full Simulated Experiment (1) Full Simulated Experiment (1)

DataData

• Full Simulated Experiment :

• normalised to the data (73.4 fb-1)

• BF(signal) = 7.10-7

• Full Simulated Experiment :

• normalised to the data (73.4 fb-1)

• BF(signal) = 7.10-7

BB- - D D00K*K*- - KKss- - KK++KK- -

FSEFSE

G. Thérin B->DK* 14

Échantillons de contrôle

• Échantillons

– D pi avec D-> K pi

– D pi avec D-> K K

• Différence entre MC et données

– Facteurs d’échelle

– shifts paramètres pour le fit sur les données

• correction d’efficacité des coupures

G. Thérin B->DK* 15

E parameterization

Control samples (1) Control samples (1)

= 1.0 ± 0.3 MeV± 0.3 MeV

s = 10.8 ± 0.3 MeV± 0.3 MeV

BB- - D D- -

KK++--

BB- - DK* DK*- - K Kss- -

KK++KK--

BB- - D D- -

KK++KK--

= -0.2 ± 0.3 MeV± 0.3 MeV

s = 15.9 ± 0.3 MeV± 0.3 MeV

= -0.5 ± 0.3 MeV± 0.3 MeV

s = 15.7 ± 0.3 MeV± 0.3 MeV

= -3.5 ± 1.0 MeV± 1.0 MeV

s = 18.6 ± 1.0 MeV± 1.0 MeV

= -4.3 ± 0.6 MeV± 0.6 MeV

s = 16.6 ± 0.6 MeV± 0.6 MeV

MC

M

C

MC

M

C

Dat

Dat

a

a

Dat

Dat

a

a

G. Thérin B->DK* 16

mes parameterization

Control samples (2) Control samples (2)

BB- - D D- -

KK++--

BB- - DK* DK*- - K Kss- -

KK++KK--

BB- - D D- -

KK++KK--

=5279.28±0.06 MeV±0.06 MeV

s = 2.50 ± 0.05 MeV± 0.05 MeV

=2579.26±0.03 MeV±0.03 MeV

s = 2.50 ± 0.03 MeV± 0.03 MeV

=5279.14±0.04 MeV±0.04 MeV

s = 2.51 ± 0.03 MeV± 0.03 MeV

=5279.88±0.1MeV±0.1MeV

s= 2.6 ± 0.1 MeV± 0.1 MeV

e = 5290.8 ± 0.6 MeVe = 5290.8 ± 0.6 MeV

=5279.87 ± 0.09 MeV± 0.09 MeV

s= 2.56 ± 0.07 MeV± 0.07 MeV

e= 5290.6 ± 0.9 MeVe= 5290.6 ± 0.9 MeV

MC

M

C

MC

M

C

Dat

Dat

a

a

Dat

Dat

a

a

G. Thérin B->DK* 17

Systematic errors :

Only for run 1 &2 and SP4

• Tracking, Ks and PID efficiencies taken from analog analyses in AWG

Correction factors due to Data/MC mismatch carefully studied

o Fit parameters and stability yet to be done. • Yields : Efficiency Errors (%)

Monte Carlo statistics - 2.2

• Tracking efficiency (3GTVL&CT)D Ks -

3*1.3=4D(K pi)K* 0.96 3*0.8=2.4

• Ks efficiency 0.98 3• Kaon ID - 2 Correction factors for cuts Peaking background (below)o Fit parameters

• Asymmetry : Charge asymmetry tracking/PID - 0.3

• BR : B counting 1.1 % - 1.1 Branching fractions (from Ks)[PDG] - 0.39

Only for run 1 &2 and SP4

• Tracking, Ks and PID efficiencies taken from analog analyses in AWG

Correction factors due to Data/MC mismatch carefully studied

o Fit parameters and stability yet to be done. • Yields : Efficiency Errors (%)

Monte Carlo statistics - 2.2

• Tracking efficiency (3GTVL&CT)D Ks -

3*1.3=4D(K pi)K* 0.96 3*0.8=2.4

• Ks efficiency 0.98 3• Kaon ID - 2 Correction factors for cuts Peaking background (below)o Fit parameters

• Asymmetry : Charge asymmetry tracking/PID - 0.3

• BR : B counting 1.1 % - 1.1 Branching fractions (from Ks)[PDG] - 0.39

G. Thérin B->DK* 18

Full Simulated Experiment (9 generated events)

Full Simulated Experiment (9 generated events)

Fit Fit on sidebands | on sidebands |E|> 60 MeV, E|> 60 MeV, then fit the fit the same shapesame shape on signal band |on signal band |E|<40 MeVE|<40 MeV

mes (Argus+Gaus)

= 5.2793 GeV (fixed)

s= 2.5 MeV (fixed)

Endpoint = 5.29 GeVEndpoint = 5.29 GeV (fixed)(fixed)

= 33.4 ± 6.9 (fixed)= 33.4 ± 6.9 (fixed)

Fit Fit on sidebands | on sidebands |E|> 60 MeV, E|> 60 MeV, then fit the fit the same shapesame shape on signal band |on signal band |E|<40 MeVE|<40 MeV

mes (Argus+Gaus)

= 5.2793 GeV (fixed)

s= 2.5 MeV (fixed)

Endpoint = 5.29 GeVEndpoint = 5.29 GeV (fixed)(fixed)

= 33.4 ± 6.9 (fixed)= 33.4 ± 6.9 (fixed)

EE (P1+Gaus) mes > 5.27 GeV

= 1 MeV (fixed)

s = 10.8 MeV (fixed)

EE (P1+Gaus) mes > 5.27 GeV

= 1 MeV (fixed)

s = 10.8 MeV (fixed)

8.2 ± 3.8 events± 3.8 events8.2 ± 3.8 events± 3.8 events 5.1 ± 3.6 events± 3.6 events5.1 ± 3.6 events± 3.6 events

slope = -1.1 ± 1.0slope = -1.1 ± 1.0 slope = -1.1 ± 1.0slope = -1.1 ± 1.0

G. Thérin B->DK* 19

D0(K+ K-) K*-(Ks pi-) [FSE]

2D fit with fixed gaussian parameters

8.7+3.9-3.2

for 9.0 generated events

1D 1D

G. Thérin B->DK* 20

Peaking Background

• BK*KK

• BD0Ks

• BD*K*

• BK*KK

• BD0Ks

• BD*K*

Data sampleData sample fitting A+G(mes) counting fitting A+G(mes) counting

Generic B+B-Generic B+B- 3.2 +/- 1.43.2 +/- 1.4 4.7 +/- 1.4 (2.7 4.7 +/- 1.4 (2.7 K*KK)K*KK)

Generic B0B0Generic B0B0 0.0 +/- 0.20.0 +/- 0.2 0.4 +/- 0.4 0.4 +/- 0.4

CP CocktailCP Cocktail - - 1.3 1.3

K*KK Signal MC (BR 10K*KK Signal MC (BR 10-5-5) ) - - 1.1 +/- 0.1 1.1 +/- 0.1

Data sampleData sample fitting A+G(mes) counting fitting A+G(mes) counting

Generic B+B-Generic B+B- 3.2 +/- 1.43.2 +/- 1.4 4.7 +/- 1.4 (2.7 4.7 +/- 1.4 (2.7 K*KK)K*KK)

Generic B0B0Generic B0B0 0.0 +/- 0.20.0 +/- 0.2 0.4 +/- 0.4 0.4 +/- 0.4

CP CocktailCP Cocktail - - 1.3 1.3

K*KK Signal MC (BR 10K*KK Signal MC (BR 10-5-5) ) - - 1.1 +/- 0.1 1.1 +/- 0.1

Estimated peaking BGCK : 3.2 +/- 1.4 +/- ? (unknown BR)

Estimated peaking BGCK : 3.2 +/- 1.4 +/- ? (unknown BR)

K*KK signal MCK*KK signal MC

Will be studied on data

G. Thérin B->DK* 21

Outlook (CP=+1)

• Finish Finish BAD 697BAD 697 v1 on run 1 & 2 data. No request to unblind. v1 on run 1 & 2 data. No request to unblind.

• Ntuple productionNtuple production on reprocessed run 1-to-3 data and SP5 complete. on reprocessed run 1-to-3 data and SP5 complete.

• Cross checkCross check with D with D00 in K in K

• Add Add mode into a common CP+1 analysis mode into a common CP+1 analysis

• UnblindUnblind at the Breco AWG meeting before the Dec. Collab. Meeting at the Breco AWG meeting before the Dec. Collab. Meeting

• Finish Finish BAD 697BAD 697 v1 on run 1 & 2 data. No request to unblind. v1 on run 1 & 2 data. No request to unblind.

• Ntuple productionNtuple production on reprocessed run 1-to-3 data and SP5 complete. on reprocessed run 1-to-3 data and SP5 complete.

• Cross checkCross check with D with D00 in K in K

• Add Add mode into a common CP+1 analysis mode into a common CP+1 analysis

• UnblindUnblind at the Breco AWG meeting before the Dec. Collab. Meeting at the Breco AWG meeting before the Dec. Collab. Meeting

Mes when M(K+K-) in DMes when M(K+K-) in D00 mass sideband (> 4 mass sideband (> 4 ss))

Mes when M(K+K-) in DMes when M(K+K-) in D00 mass sideband (> 4 mass sideband (> 4 ss))

G. Thérin B->DK* 22

Analyse CP=-1

First look• Run 1 et 2 D0 -> Ks Phi, Ks pi0

• Comparaisons données Monte Carlo

• Statistiques attendues (FSE)

– Signal

– Bruits de fond

G. Thérin B->DK* 23

CP=-1 Ks Phi

coupures non réoptimisées, mais familières

G. Thérin B->DK* 24

CP=-1 Ks pi0

G. Thérin B->DK* 25

Perspectives

• Tous les ntuples analysis 12, sont produits (presque tous). Avec une fenêtre de +/- 90 MeV sur M_D0.

• Analyse CP=+1 Etude complète du mode K+K- sur run 1-2 • La suite sur run 1-2-3

• Etude du bruit de fond piquant sur les données• Modifications minimes de coupures• Addition du mode pi+ pi-

• Objectif: ouvrir la boite en décembre

• Analyse CP=-1 1er passage présenté.• Résultats + solides en décembre sur le + de modes possibles

• Analyse combinée CP=+/-1• Résultats préliminaires présentables à une conf. d’hiver• PRL d’ici l’été

• En chantier :• D0 K+ pi- et autres modes de mauvais signe• K* K- pi0

G. Thérin B->DK* 26

Antisèches

G. Thérin B->DK* 27

Control samples (3) Control samples (3)

Study correction factors 5279.87 ± 0.09 5279.26 ± 0.03 1.000116 ± 1.80E-05s 2.56 ± 0.07 2.50 ± 0.03 1.024000 ± 3.06E-02endpoint 5290.6 ± 0.9

-4.3 ± 0.6 -0.2 ± 0.3 21.500000 ± 3.24E+01s 16.6 ± 0.6 15.9 ± 0.3 1.044025 ± 4.26E-02

Scale Factordata MC 5279.87 ± 0.09 5279.26 ± 0.03 1.000116 ± 1.80E-05s 2.56 ± 0.07 2.50 ± 0.03 1.024000 ± 3.06E-02endpoint 5290.6 ± 0.9

-4.3 ± 0.6 -0.2 ± 0.3 21.500000 ± 3.24E+01s 16.6 ± 0.6 15.9 ± 0.3 1.044025 ± 4.26E-02

Scale Factordata MC

5279.88 ± 0.1 5279.14 ± 0.04 1.000140 ± 2.040E-05s 2.6 ± 0.1 2.51 ± 0.03 1.035857 ± 4.172E-02

endpoint 5290.8 ± 0.6

-3.5 ± 1.0 -0.50 ± 0.30 7.000000 ± 4.6519s 18.6 ± 0.1 15.70 ± 0.30 1.184713 ± 0.0235

data MC Scale Factor

5279.28 ± 0.06 5279.89 ± 0.11

s 2.50 ± 0.05 2.56 ± 0.09

1.0 ± 0.3 -3.9 ± 1.17

s 10.8 ± 0.3 11.3 ± 0.5

DataMC

BB- - D D- -

KK++--

BB- - D D- -

KK++KK--

E

m

es

E

m

es

E

m

es

E

m

es

E

E

mes

mes

E

E

mes

mes

E

E

mes

mes

E

E

mes

mes

BB- - DK* DK*- - K Kss- -

KK++KK--

G. Thérin B->DK* 28

Correction factors Correction factors

efficiency SignalMass D0 0.840 ± 0.046 0.858 ± 0.019 0.978 ± 0.049Fisher 0.894 ± 0.046CosBmom 0.996 ± 0.047 0.997 ± 0.019 0.999 ± 0.051mesDE

correction Factorsefficiency Data