Lesson 6 Profexprofex.doebelin.org/wp-content/uploads/2017/06/Lesson-6.pdf · Lesson 6 Profex...

Post on 03-Oct-2020

13 views 0 download

Transcript of Lesson 6 Profexprofex.doebelin.org/wp-content/uploads/2017/06/Lesson-6.pdf · Lesson 6 Profex...

Lesson 6

Profex Graphical User Interface for BGMN

and Fullprof

Nicola Döbelin

RMS Foundation, Bettlach, Switzerland

June 07 – 09, 2017, Oslo, N

2

Background Information

Developer: Nicola Döbelin (private)

License: GPL v2 or later (open source)

Founded in: 2003

Platforms: Windows XP / Vista / 7 / 8 / 10

Linux

Mac OS X 10.7 -10.11 (64bit)

Rietveld Backends: BGMN, Fullprof.2k

Website: http://profex.doebelin.org

Current stable version: 3.11.0

History

3

2003: Start of development as an alternative GUI for Fullprof.2k

For personal use only

Linux only

2006: Major rewrite

Support for Windows

2012: Support for BGMN Rietveld Backend added

2013: First public release

2014: Support for Mac OS X

First Use

4

Profex

First Use

5

«Dock Windows»

Can be re-arranged

(drag & drop)

Stacked

Floating

Closed

(opened from

«Window» menu)

«Open Graph File»

Load Scan File

6

Select correct file format

First Use: Example 1

7

Scan File = «Project»

Scans in File

Plot area

(press «shift» for

help window)

First Use: Example 1

8

Identify phases from

internal database

First Use: Example 1

9

Create Refinement Control File

First Use: Example 1

10

Choose correct

instrument

configuration

Select phases

(HAp is pre-selected)

First Use: Example 1

11

New BGMN Refinement

Control File was generated

First Use: Example 1

12

Run the refinement

First Use: Example 1

13

Plot display changed from *.raw file

to *.dia (= refinement result)

First Use: Example 1

14

Left mouse button:

Zoom / unzoom

Right mouse button:

Context menu

Current discrepancy

value Rwp

Lowest expected

discrepancy value Rexp

Acceptable

discrepancy value 1.5·Rexp

(customizable)

First Use: Example 1

15

First Use: Example 1

16

Add another phase

First Use: Example 1

17

Select Whitlockite

Control file already

exists, don’t generate

a new default file

Click «OK» and re-run

the refinement

First Use: Example 1

18

Phase Quantities:

95.55 (± 0.13) wt-% Hydroxyapatite

4.45 (± 0.13) wt-% Whitlockite

χ2 = 1.625

First Use: Example 1

19

*.lst file with detailed

refinement results

opened automatically

Features of Profex (I)

20

What Profex does in the background:

- Generate a control file

- Copy all selected structure files from local DB to location of scan file

- Copy instrument configuration file from local DB to location of scan file

- Adjust file names in control file

- Converts Raw Scan format to

XY format for BGMN

- Convert file formats (Windowx ↔ Unix/Mac)

- Adjusts GOALs for phase quantification

Features of Profex (II)

21

Instrument config file

Structure files

Handled by Profex:

Conversion of raw scan

XRDML XY

Automatic file names

of output files

GOALs for phase

quantification

Features of Profex (III)

22

With Profex:

1. Load scan file

2. Use «Append phase» dialog to select phases, instrument,

and generate control file

3. Run refinement

No need to:

- Copy structure / device files

- Change any file names

- Convert scan files*

* for supported scan file formats

Features of Profex (IV)

23

Advantages:

- Very efficient workflow for many use cases

- Automatic / batch refinements

- Easier learning curve

Disadvantages:

- Restrictions in choice of file names: Do not force

Profex to use different file names than the

auto-generated ones

Optimizing the Refinement

24

Rietveld Refinement = Curve Fitting

𝑦 = 𝑎𝑥 + 𝑏

𝐹ℎ𝑘𝑙 = 𝑓0 ∙ 𝑒−𝐵∙sin2 𝜃𝜆2 ∙ 𝑒2𝜋𝑖(ℎ𝑥+𝑘𝑦+𝑙𝑧)

1

𝑑=𝑏2𝑐2ℎ2 sin2 𝛼 + 𝑐2𝑎2𝑘2 sin2 𝛽 + 𝑎2𝑏2𝑙2 sin2 𝛾 + 2𝑎𝑏𝑐2ℎ𝑘 cos 𝛼 cos 𝛽 − cos 𝛾 + 2𝑎𝑏2𝑐ℎ𝑙(cos 𝛼 cos 𝛾 − cos 𝛽 ) + 2𝑎2𝑏𝑐𝑘𝑙(cos 𝛽 cos 𝛾 − cos 𝛼 )

𝑎2𝑏2𝑐2(1 − cos2 𝛼 − cos2 𝛽 − cos2 𝛾 − 2 cos 𝛼 cos 𝛽 cos(𝛾))

𝑊𝑎 =𝑆𝑎 ∙ 𝑍𝑀𝑉 𝑎 ∙ 𝑢𝑚

𝐾

a = slope

b = y intercept

Phase quantities:

Relative peak intensities:

Lattice plane spacing:

θ = asin(𝜆

2𝑑) Peak position:

User decides which parameters to

fit to measured diffraction pattern

Optimizing the Refinement

25

Right-click on line «STRUC[1]=Hydroxyapatite.str»

And select

«Open File»

Optimizing the Refinement

26

Alternatively click

«Open all Project Structure Files»

Opens both structure files

BGMN Control / Structure File Syntax

27

X=0 Parameter X is fixed at the value 0

X is not refined

PARAM=X=0 Parameter X is initialized with the value 0

X is released for refinement

PARAM=X=0_-1^1 Parameter X is initialized with the value 0

X is released for refinement

X can vary between -1 and 1

X=ANISO^1 Parameter X is initialized with the value 0

X is released for anisotropic refinement

X can vary between 0 and 1

(e.g. size of the crystallites)

Optimizing the Refinement

28

In «hydroxyapatite.str»

right-click on

«k2=0»

and select

«refine isotropically»

Alternatively: Place cursor on «k2=0» and press:

F6: fix isotropic anisotropic

F5: anisotropic isotropic fix

Toggling Parameter Refinement States

29

Isotropic parameters Anisotropic parameters

Texture

Fix A=0.9424

Fix B1=0

GEWICHT=SPHAR0

Refined with limits PARAM=A=0.9424_0.9404^0.9444

Refined isotropically PARAM=B1=0_0^0.01

GEWICHT=SPHAR2

Refined without limits PARAM=A=0.9424

Refined anisotropically

B1=ANISO^0.01

GEWICHT=SPHAR4

F6

F5

F5

F6

Optimized Refinement

30

Done!

Close Project

Optimized Refinement

31

Further optimizations:

- Additional phase MgO

- Substitutions

- Thermal displacement parameters

Example 2: Batch Refinement

32

1. Set Format

2. Select and

open all files

Series of measurements of the same sample

Example 2: Batch Refinement

33

One Project per File

Example 2: Batch Refinement

34

1. Add

«Hydroxyapatite»

and

«Whitlockite»

2. Run the refinement

Example 2: Batch Refinement

35

Satisfactory results

Use the same project settings

for all other datasets

Example 2: Batch Refinement

36

Identical control file

was created

«Run Batch Refinement»

Will process all open projects

Example 2: Batch Refinement

37

Follow the progress

Example 2: Batch Refinement

38

Export results of all

open projects

Exported Global GOALs

39

Sort by «Parameter/Goal»

Exported Global GOALs

40

Easy to compute

mean and standard deviations

Refined Chemical Composition

41

Open «Window Chemistry»

Make sure the Quantity GOALs are assigned correctly

Normalized to 100%

Normalized to

refined phase quantity

Total sample compo-

sition available

Create CIF files from refined structures

42

Export CIF files

Drawing Structures

43

http://jp-minerals.org/vesta/en/

Exporting Diffraction Patterns

44

1. Display the Plot Area

2. Select «Save As…»

Diffraction Data Formats

45

ASCII Free format (*.xy)

for import in

Excel, Origin, etc.

Diffraction Data Formats

46

Scalable Vector

Graphics (*.svg)

for import in Illustrator,

CorelDRAW, Inkscape etc.

Diffraction Data Formats

47

Print to PDF (PDF printer required)

Mass Export (to printer, PDF, SVG)

Profex

More «Behind the Scenes» information

in «Lesson 8: Crystal Structures»

48

http://profex.doebelin.org

49