Lesson 15: Structure in Graphs of Polynomial...

Post on 25-Apr-2020

15 views 0 download

Transcript of Lesson 15: Structure in Graphs of Polynomial...

Lesson15

M1ALGEBRAII

Lesson15:StructureinGraphsofPolynomialFunctions

StudentOutcomes

§ Studentsgraphpolynomialfunctionsanddescribeendbehaviorbaseduponthedegreeofthepolynomial.

LessonNotesSofarinthismodule,studentshavepracticedfactoringpolynomialsusingseveraltechniquesandexaminedhowtheycanusethefactoredformofthepolynomialtoidentifyinterestingcharacteristicsofthegraphsofthesefunctions.Inthislesson,studentscontinueexploringgraphsofpolynomialfunctionsinordertoidentifyhowthedegreeofthepolynomialinfluencestheendbehaviorofthesegraphs.Theyalsodiscusshowtoidentify𝑦-interceptsofthegraphsofpolynomialfunctionsandaregivenanopportunitytoconstructviableargumentsandcritiquethereasoningofothersintheOpeningExercise(MP.3).

OpeningExercise(8minutes)OpeningExercise

Sketchthegraphof𝒇 𝒙 = 𝒙𝟐.Whatwillthegraphof𝒈 𝒙 = 𝒙𝟒looklike?Sketchitonthesamecoordinateplane.Whatwillthegraphof𝒉 𝒙 = 𝒙𝟔looklike?

Havestudentsrecallandsketchthegraphof𝑓 𝑥 = 𝑥,.Discussthecharacteristicsofthegraph,wherethe𝑥-interceptis,andwhythegraphstaysabovethe𝑥-axisoneithersideofthe𝑥-intercept.

Inpairsoringroups,havethemdiscussorwritewhattheythinkthegraphof𝑔 𝑥 = 𝑥.willlooklikeandhowtheythinkitcomparestothegraphof𝑓 𝑥 = 𝑥,.Oncetheydoso,theyshouldsketchtheirideaofthegraphof𝑔ontopofthegraphof𝑓.Discusswithstudentswhattheyhavesketched,andemphasizethesimilaritiesbetweenthetwographs.

Since𝒈 𝒙 = 𝒙𝟐 𝟐,𝒈(𝒙)willincreasefasteras𝒙increasesthan𝒇 𝒙 does.Bothgraphspassthrough 𝟎, 𝟎 .Thebasicshapesarethesame,butneartheoriginthegraphof𝒈isflatterthanthegraphof𝒇.

Finally,inpairsoringroups,havestudentsdiscussorwritewhattheythinkthegraphofℎ 𝑥 = 𝑥5willlooklikeandhowtheythinkitwillcomparetographsof𝑓and𝑔.Oncetheydoso,studentsshouldsketchonthesamegraphtheprevioustwographs.Again,discussgraphswithstudents,andemphasizethesimilaritiesbetweengraphs.

Since𝒉 𝒙 = 𝒙𝟐 ⋅ 𝒙𝟐 ⋅ 𝒙𝟐,thegraphof𝒉againpassesthroughtheorigin.Sincewearesquaringandmultiplyingbysquares,thegraphof𝒉shouldlookaboutthesameasthegraphsof𝒇and𝒈butincreaseevenfasterandbeevenflatterneartheorigin.

150

Lesson15

M1ALGEBRAII

§ Usingagraphingutility,havestudentsgraphallthreefunctionssimultaneouslytoconfirmtheirsketches.

Discussion(5minutes)

UsethegraphsfromtheOpeningExercisetoframethefollowingdiscussionaboutendbehavior.

Askstudentstocompareanddescribethebehaviorofthevalue𝑓(𝑥)astheabsolutevalueof𝑥increaseswithoutbound.Introducethetermendbehaviorasawaytotalkaboutthefunctionandwhathappenstoitsgraphbeyondtheboundedregionofthecoordinateplanethatisdrawnonpaper.Thatis,theendbehaviorisawaytodescribewhathappenstothefunctionas𝑥approachespositiveandnegativeinfinitywithouthavingtodrawthegraph.

Notetoteacher:Itisimportanttonotethatendbehaviorcannotbegivenaprecisemathematicaldefinitionuntiltheconceptofalimitisintroducedincalculus.Togetaroundthisdifficulty,mosthighschooltextbooksdrawpicturesandstatethingslike,“As𝑥 → ∞,𝑓 𝑥 → ∞.”Wedothisalso,butitisimportanttocarefullydescribetostudentsthemeaningofthephrase,“As𝑥approachespositiveinfinity,”beforeusingthephrase(oritssymbolversion)todescribeendbehavior.Thatisbecausethephraseappearstomeanthatthesymbol𝑥isliterally“movingalongthenumberlinetotheright.”Nottrue!Recallthatavariableisjustaplaceholderforwhichanumbercanbesubstituted(thinkofablankorboxusedinGrade2equations)and,therefore,doesnotactuallymoveorvary.

Thephrase,“As𝑥 → ∞,”canbeprofitablydescribedasaprocessbywhichtheuserofthephrasethinksofrepeatedlysubstitutinglargerandlargerpositivenumbersinfor𝑥,eachtimeperformingwhatevercalculationisrequiredbytheproblemforthatnumber(whichinthislessonisfindingthevalueofthefunction).

Thisishowmathematiciansoftenusethephraseeventhoughtheprecisedefinitionoflimitremovesanyneedtothinkofalimitasaprocess.

§ ENDBEHAVIOR(description):Let𝑓beafunctionwhosedomainandrangearesubsetsoftherealnumbers.Theendbehaviorofafunction𝑓isadescriptionofwhathappenstothevaluesofthefunction

• as𝑥approachespositiveinfinity,and• as𝑥approachesnegativeinfinity.

Helpstudentsunderstandthedescriptionofendbehaviorusingthefollowingpicture.

Lesson15

M1ALGEBRAII

As𝑥 → −∞, As𝑥 → ∞,𝑓 𝑥 → −∞ 𝑓 𝑥 → ∞

Askstudentstomakeageneralizationabouttheendbehaviorofpolynomialsofevendegreeinwritingindividuallyorwithapartner.Theyshouldconcludethatanevendegreepolynomialfunctionhasthesameendbehavioras𝑥 → ∞andas𝑥 → −∞.Afterstudentshavegeneralizedtheendbehavior,havethemcreatetheirowngraphicorganizerlikethefollowing.

𝑥 → ∞

𝑥 → −∞

𝑓(𝑥) → −∞

𝑓(𝑥) → ∞

Graphof𝑦 = 𝑓(𝑥)

Lesson15

M1ALGEBRAII

Ifstudentssuspectthatendbehaviorofapolynomialfunctionwithevendegreewillalwaysincrease,thensuggestexaminingthegraphsof𝑓 𝑥 = 1 − 𝑥,and𝑔 𝑥 = −𝑥..

Example1(8minutes)

StudentsarenowgoingtolookatanewsetoffunctionsbutasksimilarquestionstothoseaskedintheOpeningExercise.

Example1

Sketchthegraphof𝒇 𝒙 = 𝒙𝟑.Whatwillthegraphof𝒈 𝒙 = 𝒙𝟓looklike?Sketchthisonthesamecoordinateplane.Whatwillthegraphof𝒉 𝒙 = 𝒙𝟕looklike?Sketchthisonthesamecoordinateplane.

Havestudentsrecallandsketchthegraphof𝑓 𝑥 = 𝑥>.Discussthecharacteristicsofthegraph,wherethe𝑥-interceptis,andwhythegraphisabovethe𝑥-axisfor𝑥 > 0andbelowthe𝑥-axisfor𝑥 < 0.

Inpairsoringroups,havestudentsdiscussorwritewhattheythinkthegraphof𝑔 𝑥 = 𝑥Bwilllooklikeandhowitwillrelatetothegraphof𝑓 𝑥 = 𝑥>.Theyshouldsketchtheirresultsontopoftheoriginalgraphof𝑓.Discusswithstudentswhattheyhavesketched,andemphasizethesimilaritiestothegraphof𝑓 𝑥 = 𝑥>.

Finally,inpairsoringroups,havestudentsdiscussorwritewhattheythinkthegraphofℎ 𝑥 = 𝑥Cwilllooklikeandhowitwillrelatetothegraphsof𝑓and𝑔.Theyshouldsketchonthesamegraphtheyusedwiththeprevioustwographs.Again,discussthegraphswithstudents,andemphasizethesimilaritiesbetweengraphs.

Usingagraphingutility,havestudentsgraphallthreefunctionssimultaneouslytoconfirmtheirsketches.

Even-DegreePo

sitiv

eLead

ingCo

efficient

NegativeLead

ingCo

efficient

𝑓(𝑥) = 𝑥,

𝑓(𝑥) = −𝑥,

As𝑥 → ∞,𝑓(𝑥) → ∞

As𝑥 → −∞,𝑓(𝑥) → ∞

As𝑥 → ∞,𝑓(𝑥) → −∞

As𝑥 → −∞,𝑓(𝑥) → −∞

Lesson15

M1ALGEBRAII

Askstudentstocompareanddescribethebehaviorofthevalueof𝑓(𝑥)astheabsolutevalueof𝑥increaseswithoutbound.Guidethemtousetheterminologyoftheendbehaviorofthefunction.

Askstudentstomakeageneralizationabouttheendbehaviorofpolynomialsofodddegreeindividuallyorwithapartner.Afterstudentshavegeneralizedtheendbehavior,havethemcreatetheirowngraphicorganizerlikethefollowing.

Ifstudentssuspectthatpolynomialfunctionswithodddegreealwayshavethevalueofthefunctionincreaseas𝑥increases,thensuggestexaminingafunctionwithanegativeleadingcoefficient,suchas𝑓 𝑥 = 4 − 𝑥or𝑔 𝑥 = −𝑥>.

§ HowdothesegraphsdifferfromthoseintheOpeningExercise?Whyaretheydifferent?ú StudentsmaytalkabouthowtheOpeningExercisegraphsstayabovethe𝑥-axiswhileinthisexamplethegraphscut

throughthe𝑥-axis.Guidestudentsasnecessarytoconcludingthattheendbehaviorofeven-degreepolynomialfunctionsisthatbothendsbothapproachpositiveinfinityorbothapproachnegativeinfinitywhiletheendbehaviorofodd-degreepolynomialfunctionsisthatthebehavioras𝑥 → ∞isoppositeofthebehavioras𝑥 → −∞.

𝑓(𝑥) = 𝑥>

𝑓(𝑥) = −𝑥>

Odd-Degree

Positiv

eLead

ingCo

efficient

NegativeLead

ingCo

efficient

As𝑥 → ∞,𝑓(𝑥) → ∞

As𝑥 → −∞,𝑓(𝑥) → −∞

As𝑥 → ∞,𝑓(𝑥) → −∞

As𝑥 → −∞,𝑓(𝑥) → ∞

Lesson15

M1ALGEBRAII

Exercise1(8minutes)

Keepingtheresultsoftheexamplesaboveinmind,havestudentsworkwithpartnersoringroupstoanswerthefollowingquestions.

Exercise1

a. Considerthefollowingfunction,𝒇 𝒙 = 𝟐𝒙𝟒 + 𝒙𝟑 − 𝒙𝟐 + 𝟓𝒙 + 𝟑,withamixtureofoddandevendegreeterms.PredictwhetheritsendbehaviorwillbelikethefunctionsintheOpeningExerciseormorelikethefunctionsfromExample1.Graphthefunction𝒇usingagraphingutilitytocheckyourprediction.

Studentsseethatthisfunctionactsmoreliketheeven-degreemonomialfunctionsfromtheOpeningExercise.

b. Considerthefollowingfunction,𝒇 𝒙 = 𝟐𝒙𝟓 − 𝒙𝟒 − 𝟐𝒙𝟑 + 𝟒𝒙𝟐 + 𝒙 + 𝟑,withamixtureofoddandevendegreeterms.PredictwhetheritsendbehaviorwillbelikethefunctionsintheOpeningExerciseormorelikethefunctionsfromExample1.Graphthefunction𝒇usingagraphingutilitytocheckyourprediction.

Studentsseethatthisfunctionactsmorelikeodd-degreemonomialfunctionsfromExample1.Theycandrawaconclusionsuchasthatthefunctionbehaveslikethehighestdegreeterm.

c. Thinkingbacktoourdiscussionof𝒙-interceptsofgraphsofpolynomialfunctionsfromthepreviouslesson,sketchagraphofaneven-degreepolynomialfunctionthathasno𝒙-intercepts.

Studentsmaydrawthegraphofaquadraticfunctionthatstaysabovethe𝒙-axissuchasthegraphof𝒇 𝒙 = 𝒙𝟐 + 𝟏.

d. Similarly,canyousketchagraphofanodd-degreepolynomialfunctionwithno𝒙-intercepts?

Havestudentsworkinpairsorgroupsanddiscoverthatbecauseofthe“cutthrough”natureofgraphsofodd-degreepolynomialfunctionthereisalwaysan𝒙-intercept.

Conclusion:Graphsofodd-poweredpolynomialfunctionsalwayshavean𝒙-intercept,whichmeansthatodd-degreepolynomialfunctionsalwayshaveatleastonezero(orroot)andthatpolynomialfunctionsofodd-degreealwayshaveoppositeendbehaviorsas𝒙 → ∞and𝒙 → −∞.

Havestudentsconcludethatthegraphsofodd-degreepolynomialfunctionsalwayshaveatleastone𝑥-interceptandsothefunctionsalwayshaveatleastonezero.Thegraphsofeven-degreepolynomialfunctionsmayormaynothave𝑥-intercepts.

Lesson15

M1ALGEBRAII

Exercise2(8minutes)

Inthisexercise,studentsusewhattheylearnedtodayaboutendbehaviortodeterminewhetherornotthepolynomialfunctionusedtomodelthedatahasanevenorodddegree.

Exercise2

TheCenterforTransportationAnalysis(CTA)studiesallaspectsoftransportationintheUnitedStates,fromenergyandenvironmentalconcernstosafetyandsecuritychallenges.A1997studycompiledthefollowingdataofthefueleconomyinmilespergallon(mpg)ofacarorlighttruckatvariousspeedsmeasuredinmilesperhour(mph).Thedataarecompiledinthetablebelow.

FuelEconomybySpeed

Speed(mph) FuelEconomy(mpg)𝟏𝟓 𝟐𝟒. 𝟒𝟐𝟎 𝟐𝟕. 𝟗𝟐𝟓 𝟑𝟎. 𝟓𝟑𝟎 𝟑𝟏. 𝟕𝟑𝟓 𝟑𝟏. 𝟐𝟒𝟎 𝟑𝟏. 𝟎𝟒𝟓 𝟑𝟏. 𝟔𝟓𝟎 𝟑𝟐. 𝟒𝟓𝟓 𝟑𝟐. 𝟒𝟔𝟎 𝟑𝟏. 𝟒𝟔𝟓 𝟐𝟗. 𝟐𝟕𝟎 𝟐𝟔. 𝟖𝟕𝟓 𝟐𝟒. 𝟖

Source:TransportationEnergyDataBook,Table4.28.http://cta.ornl.gov/data/chapter4.shtml

a. Plotthedatausingagraphingutility.Whichvariableistheindependentvariable?

Speedistheindependentvariable.

b. Thisdatacanbemodeledbyapolynomialfunction.Determineifthefunctionthatmodelsthedatawouldhaveanevenorodddegree.

Itseemswecouldmodelthisdatabyaneven-degreepolynomialfunction.

c. Istheleadingcoefficientofthepolynomialthatcanbeusedtomodelthisdatapositiveornegative?

Theleadingcoefficientwouldbenegativesincetheendbehaviorofthisfunctionistoapproachnegativeinfinityonbothsides.

d. Listtwopossiblereasonsthedatamighthavetheshapethatitdoes.

Possibleresponses:Fueleconomyimprovesuptoacertainspeed,butthenwindresistanceathigherspeedsreducesfueleconomy;theincreasedgasneededtogohigherspeedsreducesfueleconomy.

Closing(3minutes)

§ Inthislesson,studentsexploredthecharacteristicsofthegraphsofpolynomialfunctionsofevenandodd-degree.Graphsofeven-degreepolynomialsdemonstratethesameendbehavioras𝑥 → ∞asitdoesas𝑥 → −∞,whilegraphsofodd-degreepolynomialsdemonstrateoppositeendbehavioras𝑥 → ∞asitdoesas𝑥 → −∞.Becauseofthisfact,graphsofodd-degreepolynomialfunctionsalwaysintersectthe𝑥-axis;therefore,odd-degreepolynomialfunctionshaveatleastonezeroorroot.

Lesson15

M1ALGEBRAII

As𝑥 → ∞,𝑓(𝑥) → ∞As𝑥 → −∞,𝑓(𝑥) → −∞

As𝑥 → ∞,𝑓(𝑥) → −∞As𝑥 → −∞,𝑓(𝑥) → ∞

As𝑥 → ∞,𝑓(𝑥) → ∞As𝑥 → −∞,𝑓(𝑥) → ∞

As𝑥 → ∞,𝑓(𝑥) → −∞As𝑥 → −∞,𝑓(𝑥) → −∞

Odd-DegreeEven-DegreePo

sitiveLead

ingCo

efficient

NegativeLead

ingCo

efficient

§ Studentsalsolearnedthatitisthehighestdegreetermofthepolynomialthatdeterminesifthegraphexhibitsodd-degreeendbehaviororeven-degreeendbehavior.Thismakessensebecausethehighestdegreetermofapolynomialdeterminesthedegreeofthepolynomial.

Havestudentssummarizethelessoneitherwithagraphicorganizerorawrittensummary.Agraphicorganizerisincludedbelow.

RelevantVocabulary

EVENFUNCTION:Let𝒇bea functionwhosedomainandrangeisasubset oftherealnumbers.Thefunction𝒇iscalledeveniftheequation𝒇(𝒙) = 𝒇(−𝒙)istrueforeverynumber𝒙inthedomain.

Even-degreepolynomialfunctionsaresometimesevenfunctions,like𝒇(𝒙) = 𝒙𝟏𝟎,andsometimesnot,like𝒈(𝒙) = 𝒙𝟐 − 𝒙.

ODDFUNCTION:Let𝒇beafunctionwhosedomainandrangeisasubsetoftherealnumbers.Thefunction𝒇iscalledoddiftheequation𝒇 −𝒙 =−𝒇(𝒙)istrueforeverynumber𝒙inthedomain.

Odd-degreepolynomialfunctionsaresometimesoddfunctions,like𝒇(𝒙) = 𝒙𝟏𝟏,andsometimesnot,like𝒉(𝒙) = 𝒙𝟑 − 𝒙𝟐.

ExitTicket(5minutes)

Lesson15

M1ALGEBRAII

Name Date

Lesson15:StructureinGraphsofPolynomialFunctions

ExitTicketWithoutusingagraphingutility,matcheachgraphbelowincolumn1withthefunctionincolumn2thatitrepresents.

a.

1. 𝑦 = 3𝑥>

b.

2. 𝑦 = 12 𝑥

,

c.

3. 𝑦 = 𝑥> − 8

d.

4. 𝑦 = 𝑥. − 𝑥> + 4𝑥 + 2

e.

5. 𝑦 = 3𝑥B − 𝑥> + 4𝑥 + 2

Lesson15

M1ALGEBRAII

ExitTicketSampleSolutions

Withoutusingagraphingutility,matcheachgraphbelowincolumn1withthefunctionincolumn2thatitrepresents.

a.

1. 𝒚 = 𝟑𝒙𝟑

b.

2. 𝒚 = 𝟏𝟐 𝒙

𝟐

c.

3. 𝒚 = 𝒙𝟑 − 𝟖

d.

4. 𝒚 = 𝒙𝟒 − 𝒙𝟑 + 𝟒𝒙 + 𝟐

e.

5. 𝒚 = 𝟑𝒙𝟓 − 𝒙𝟑 + 𝟒𝒙 + 𝟐

Lesson15

M1ALGEBRAII

ProblemSet

1. GraphthefunctionsfromtheOpeningExercisesimultaneouslyusingagraphingutilityandzoominattheorigin.

a. At𝒙 = 𝟎. 𝟓,orderthevaluesofthefunctionsfromleasttogreatest.

b. At𝒙 = 𝟐. 𝟓,orderthevaluesofthefunctionsfromleasttogreatest.

c. Identifythe𝒙-value(s)wheretheorderreverses.Writeabriefsentenceonwhyyouthinkthisswitchoccurs.

2. TheNationalAgriculturalStatisticsService(NASS)isanagencywithintheUSDAthatcollectsandanalyzesdatacoveringvirtuallyeveryaspectofagricultureintheUnitedStates.Thefollowingtablecontainsinformationontheamount(intons)ofthefollowingvegetablesproducedintheU.S.from1988–1994forprocessingintocanned,frozen,andpackagedfoods:limabeans,snapbeans,beets,cabbage,sweetcorn,cucumbers,greenpeas,spinach,andtomatoes.

VegetableProductionbyYear

Year VegetableProduction(tons)1988 𝟏𝟏, 𝟑𝟗𝟑, 𝟑𝟐𝟎1989 𝟏𝟒, 𝟒𝟓𝟎, 𝟖𝟔𝟎1990 𝟏𝟓, 𝟒𝟒𝟒, 𝟗𝟕𝟎1991 𝟏𝟔, 𝟏𝟓𝟏, 𝟎𝟑𝟎1992 𝟏𝟒, 𝟐𝟑𝟔, 𝟑𝟐𝟎1993 𝟏𝟒, 𝟗𝟎𝟒, 𝟕𝟓𝟎1994 𝟏𝟖, 𝟑𝟏𝟑, 𝟏𝟓𝟎

Source:NASSStatisticsofVegetablesandMelons,1995,Table191.http://www.nass.usda.gov/Publications/Ag_Statistics/1995-1996/agr95_4.pdf

a. Plotthedatausingagraphingutility.

b. Determineifthedatadisplaythecharacteristicsofanodd-oreven-degreepolynomialfunction.

c. Listtwopossiblereasonsthedatamighthavesuchashape.

3. TheU.S.EnergyInformationAdministration(EIA)isresponsibleforcollectingandanalyzinginformationaboutenergyproductionanduseintheUnitedStatesandforinformingpolicymakersandthepublicaboutissuesofenergy,theeconomy,andtheenvironment.ThefollowingtablecontainsdatafromtheEIAaboutnaturalgasconsumptionfrom1950–2010,measuredinmillionsofcubicfeet.

U.S.NaturalGasConsumptionbyYear

Year U.S.naturalgastotalconsumption(millionsofcubicfeet)

1950 𝟓. 𝟕𝟕1955 𝟖. 𝟔𝟗1960 𝟏𝟏. 𝟗𝟕1965 𝟏𝟓. 𝟐𝟖1970 𝟐𝟏. 𝟏𝟒1975 𝟏𝟗. 𝟓𝟒1980 𝟏𝟗. 𝟖𝟖1985 𝟏𝟕. 𝟐𝟖1990 𝟏𝟗. 𝟏𝟕1995 𝟐𝟐. 𝟐𝟏

Lesson15

M1ALGEBRAII

2000 𝟐𝟑. 𝟑𝟑2005 𝟐𝟐. 𝟎𝟏2010 𝟐𝟒. 𝟎𝟗

Source:U.S.EnergyInformationAdministration.http://www.eia.gov/dnav/ng/hist/n9140us2a.htm

a. Plotthedatausingagraphingutility.

b. Determineifthedatadisplaythecharacteristicsofanodd-oreven-degreepolynomialfunction.

c. Listtwopossiblereasonsthedatamighthavesuchashape.

4. Weusethetermevenfunctionwhenafunction𝒇satisfiestheequation𝒇 −𝒙 = 𝒇(𝒙)foreverynumber𝒙initsdomain.Considerthefunction𝒇 𝒙 = −𝟑𝒙𝟐 + 𝟕.Notethatthedegreeofthefunctioniseven,andeachtermisofanevendegree(theconstanttermisdegree𝟎).a. Graphthefunctionusingagraphingutility.

b. Doesthisgraphdisplayanysymmetry?

c. Evaluate𝒇 −𝒙 .

d. Is𝒇anevenfunction?Explainhowyouknow.

5. Weusethetermoddfunctionwhenafunction𝒇satisfiestheequation𝒇 −𝒙 = −𝒇(𝒙)foreverynumber𝒙initsdomain.Considerthefunction𝒇 𝒙 = 𝟑𝒙𝟑 − 𝟒𝒙.Thedegreeofthefunctionisodd,andeachtermisofanodddegree.

a. Graphthefunctionusingagraphingutility.

b. Doesthisgraphdisplayanysymmetry?

c. Evaluate𝒇(−𝒙).

Lesson15

M1ALGEBRAII

d. Is𝒇anoddfunction?Explainhowyouknow.

6. Wehavetalkedabout𝒙-interceptsofthegraphofafunctioninboththislessonandthepreviousone.The𝒙-interceptscorrespondtothezerosofthefunction.Considerthefollowingexamplesofpolynomialfunctionsandtheirgraphstodetermineaneasywaytofindthe𝒚-interceptofthegraphofapolynomialfunction.

𝑓 𝑥 = 2𝑥, − 4𝑥 − 3 𝑓 𝑥 = 𝑥> + 3𝑥, − 𝑥 + 5 𝑓 𝑥 = 𝑥. − 2𝑥> − 𝑥, + 3𝑥 − 6