Lesson 15: Inverse Functions and Logarithms

Post on 18-May-2015

2.734 views 2 download

Tags:

description

The inverse of a function "undoes" the effect of the function. We look at the implications of that property in the derivative, as well as logarithmic functions, which are inverses of exponential functions.

Transcript of Lesson 15: Inverse Functions and Logarithms

. . . . . .

Section3.2InverseFunctionsandLogarithms

V63.0121.027, CalculusI

October22, 2009

Announcements

I Quizon§§2.5–2.6nextweekI Midtermcourseevaluationsattheendofclass

..Imagecredit: RogerSmith

. . . . . .

Outline

InverseFunctions

DerivativesofInverseFunctions

LogarithmicFunctions

. . . . . .

Whatisaninversefunction?

DefinitionLet f beafunctionwithdomain D andrange E. The inverse of f isthefunction f−1 definedby:

f−1(b) = a,

where a ischosensothat f(a) = b.

Sof−1(f(x)) = x, f(f−1(x)) = x

. . . . . .

Whatisaninversefunction?

DefinitionLet f beafunctionwithdomain D andrange E. The inverse of f isthefunction f−1 definedby:

f−1(b) = a,

where a ischosensothat f(a) = b.

Sof−1(f(x)) = x, f(f−1(x)) = x

. . . . . .

Whatfunctionsareinvertible?

Inorderfor f−1 tobeafunction, theremustbeonlyone a in Dcorrespondingtoeach b in E.

I Suchafunctioniscalled one-to-oneI Thegraphofsuchafunctionpassesthe horizontallinetest:anyhorizontallineintersectsthegraphinexactlyonepointifatall.

I If f iscontinuous, then f−1 iscontinuous.

. . . . . .

Graphinganinversefunction

I Thegraphof f−1

interchangesthe x and ycoordinateofeverypointonthegraphof f

I Theresultisthattogetthegraphof f−1, weneedonlyreflectthegraphof f inthediagonalline y = x.

.

.f

.f−1

. . . . . .

Graphinganinversefunction

I Thegraphof f−1

interchangesthe x and ycoordinateofeverypointonthegraphof f

I Theresultisthattogetthegraphof f−1, weneedonlyreflectthegraphof f inthediagonalline y = x.

.

.f

.f−1

. . . . . .

Howtofindtheinversefunction

1. Write y = f(x)

2. Solvefor x intermsof y

3. Toexpress f−1 asafunctionof x, interchange x and y

ExampleFindtheinversefunctionof f(x) = x3 + 1.

Answery = x3 + 1 =⇒ x = 3

√y− 1, so

f−1(x) = 3√x− 1

. . . . . .

Howtofindtheinversefunction

1. Write y = f(x)

2. Solvefor x intermsof y

3. Toexpress f−1 asafunctionof x, interchange x and y

ExampleFindtheinversefunctionof f(x) = x3 + 1.

Answery = x3 + 1 =⇒ x = 3

√y− 1, so

f−1(x) = 3√x− 1

. . . . . .

Howtofindtheinversefunction

1. Write y = f(x)

2. Solvefor x intermsof y

3. Toexpress f−1 asafunctionof x, interchange x and y

ExampleFindtheinversefunctionof f(x) = x3 + 1.

Answery = x3 + 1 =⇒ x = 3

√y− 1, so

f−1(x) = 3√x− 1

. . . . . .

Outline

InverseFunctions

DerivativesofInverseFunctions

LogarithmicFunctions

. . . . . .

derivativeofsquareroot

Recallthatif y =√x, wecanfind

dydx

byimplicitdifferentiation:

y =√x =⇒ y2 = x

=⇒ 2ydydx

= 1

=⇒ dydx

=12y

=1

2√x

Notice 2y =ddy

y2, and y istheinverseofthesquaringfunction.

. . . . . .

Theorem(TheInverseFunctionTheorem)Let f bedifferentiableat a, and f′(a) ̸= 0. Then f−1 isdefinedinanopenintervalcontaining b = f(a), and

(f−1)′(b) =1

f′(f−1(b))

“Proof”.If y = f−1(x), then

f(y) = x,

Sobyimplicitdifferentiation

f′(y)dydx

= 1 =⇒ dydx

=1

f′(y)=

1

f′(f−1(x))

. . . . . .

Theorem(TheInverseFunctionTheorem)Let f bedifferentiableat a, and f′(a) ̸= 0. Then f−1 isdefinedinanopenintervalcontaining b = f(a), and

(f−1)′(b) =1

f′(f−1(b))

“Proof”.If y = f−1(x), then

f(y) = x,

Sobyimplicitdifferentiation

f′(y)dydx

= 1 =⇒ dydx

=1

f′(y)=

1

f′(f−1(x))

. . . . . .

Outline

InverseFunctions

DerivativesofInverseFunctions

LogarithmicFunctions

. . . . . .

Logarithms

Definition

I Thebase a logarithm loga x istheinverseofthefunction ax

y = loga x ⇐⇒ x = ay

I Thenaturallogarithm ln x istheinverseof ex. Soy = ln x ⇐⇒ x = ey.

Facts

(i) loga(x · x′) = loga x + loga x

(ii) loga( xx′

)= loga x− loga x

(iii) loga(xr) = r loga x

. . . . . .

Logarithms

Definition

I Thebase a logarithm loga x istheinverseofthefunction ax

y = loga x ⇐⇒ x = ay

I Thenaturallogarithm ln x istheinverseof ex. Soy = ln x ⇐⇒ x = ey.

Facts

(i) loga(x · x′) = loga x + loga x

(ii) loga( xx′

)= loga x− loga x

(iii) loga(xr) = r loga x

. . . . . .

Logarithms

Definition

I Thebase a logarithm loga x istheinverseofthefunction ax

y = loga x ⇐⇒ x = ay

I Thenaturallogarithm ln x istheinverseof ex. Soy = ln x ⇐⇒ x = ey.

Facts

(i) loga(x · x′) = loga x + loga x

(ii) loga( xx′

)= loga x− loga x

(iii) loga(xr) = r loga x

. . . . . .

Logarithms

Definition

I Thebase a logarithm loga x istheinverseofthefunction ax

y = loga x ⇐⇒ x = ay

I Thenaturallogarithm ln x istheinverseof ex. Soy = ln x ⇐⇒ x = ey.

Facts

(i) loga(x · x′) = loga x + loga x

(ii) loga( xx′

)= loga x− loga x

(iii) loga(xr) = r loga x

. . . . . .

Logarithmsconvertproductstosums

I Suppose y = loga x and y′ = loga x′

I Then x = ay and x′ = ay′

I So xx′ = ayay′ = ay+y′

I Therefore

loga(xx′) = y + y′ = loga x + loga x

. . . . . .

ExampleWriteasasinglelogarithm: 2 ln 4− ln 3.

Solution

I 2 ln 4− ln 3 = ln 42 − ln 3 = ln42

3

I notln 42

ln 3!

Example

Writeasasinglelogarithm: ln34

+ 4 ln 2

Answerln 12

. . . . . .

ExampleWriteasasinglelogarithm: 2 ln 4− ln 3.

Solution

I 2 ln 4− ln 3 = ln 42 − ln 3 = ln42

3

I notln 42

ln 3!

Example

Writeasasinglelogarithm: ln34

+ 4 ln 2

Answerln 12

. . . . . .

ExampleWriteasasinglelogarithm: 2 ln 4− ln 3.

Solution

I 2 ln 4− ln 3 = ln 42 − ln 3 = ln42

3

I notln 42

ln 3!

Example

Writeasasinglelogarithm: ln34

+ 4 ln 2

Answerln 12

. . . . . .

ExampleWriteasasinglelogarithm: 2 ln 4− ln 3.

Solution

I 2 ln 4− ln 3 = ln 42 − ln 3 = ln42

3

I notln 42

ln 3!

Example

Writeasasinglelogarithm: ln34

+ 4 ln 2

Answerln 12

. . . . . .

..“lawn”

.

.Imagecredit: Selva

. . . . . .

Graphsoflogarithmicfunctions

. .x

.y.y = 2x

.y = log2 x

. .(0, 1)

..(1, 0)

.y = 3x

.y = log3 x

.y = 10x

.y = log10 x

.y = ex

.y = ln x

. . . . . .

Graphsoflogarithmicfunctions

. .x

.y.y = 2x

.y = log2 x

. .(0, 1)

..(1, 0)

.y = 3x

.y = log3 x

.y = 10x

.y = log10 x

.y = ex

.y = ln x

. . . . . .

Graphsoflogarithmicfunctions

. .x

.y.y = 2x

.y = log2 x

. .(0, 1)

..(1, 0)

.y = 3x

.y = log3 x

.y = 10x

.y = log10 x

.y = ex

.y = ln x

. . . . . .

Graphsoflogarithmicfunctions

. .x

.y.y = 2x

.y = log2 x

. .(0, 1)

..(1, 0)

.y = 3x

.y = log3 x

.y = 10x

.y = log10 x

.y = ex

.y = ln x

. . . . . .

Changeofbaseformulaforexponentials

FactIf a > 0 and a ̸= 1, then

loga x =ln xln a

Proof.

I If y = loga x, then x = ay

I So ln x = ln(ay) = y ln aI Therefore

y = loga x =ln xln a

. . . . . .

Changeofbaseformulaforexponentials

FactIf a > 0 and a ̸= 1, then

loga x =ln xln a

Proof.

I If y = loga x, then x = ay

I So ln x = ln(ay) = y ln aI Therefore

y = loga x =ln xln a