Lecture 3: Semi-conductors - Generalities - Material and ...

Post on 23-Feb-2022

6 views 0 download

Transcript of Lecture 3: Semi-conductors - Generalities - Material and ...

Jean-Marie Brom (IPHC) – brom@in2p3.fr1

DETECTOR TECHNOLOGIESLecture 3: Semi-conductors

- Generalities- Material and types- Evolution

Jean-Marie Brom (IPHC) – brom@in2p3.fr 2

Semiconductors : generalities

Solid‐States band structures :Valence band : e– bond atoms togetherConduction band : e– can freely jump from an atom to another

At T ≠ 0 KElectrons mayacquireenough energyto pass the band gap… Thermal condution

Jean-Marie Brom (IPHC) – brom@in2p3.fr 3

Semiconductors : generalities

Not the same !(Thermal excitation + phonons)

Jean-Marie Brom (IPHC) – brom@in2p3.fr 4

Semiconductors : generalities

Energy loss by a charged particle : Bethe‐Bloch

Standard :Energy loss :

electrons – holes pairs created(NOT electrons – ions…)

If Field (even natural)electrons migrationElectrical pulseInformation

Too simple ! 

Jean-Marie Brom (IPHC) – brom@in2p3.fr 5

Semiconductors : generalities

One MIP in Silicon at 300°K

Energy loss : dE / dx  ≈ 388 Ev/µm

Ionisation Energy : 3.62 eV

e – holes pairs created : 107/µm

For 300 µm : 3.2 10 4 pairs created

Free charge carriers in the same volume :≈ 4.5 10 9

Signal is lost !Solution : Depletion of the detector

‐ Doping‐ Blocking contacts

Depletion : removing the maximum possible thermally excitable electrons

Jean-Marie Brom (IPHC) – brom@in2p3.fr 6

Semiconductors : generalities : the Fano factor

Number of e – h pairs is a statistical process :

Number of e‐h pairs :  N = E loss / E ionization

If excitations are independants , they obey to a Poisson statisticwith a standard deviation

σ

variance : σ

Fano factor :  variance / mean of the process (should be 1 for a perfect Poisson distribution)

Si 0.115

Ge 0.13

GaAs 0.10

Diamond 0.08

Fano factor related to energy resolution :A Fano factor < 1 means that the energy resolution would be better thantheoretically expected…

Jean-Marie Brom (IPHC) – brom@in2p3.fr 7

Semiconductors : generalities : p and n types

dopants :Arsenic, Phosphorous

dopants :Boron, Gallium, Indium

Jean-Marie Brom (IPHC) – brom@in2p3.fr 8

Semiconductors : generalities : p and n types

Typically : doping level for a Silicon Detector : 10 12 atoms / cm 3Doping us usually done by ion implantation.

Jean-Marie Brom (IPHC) – brom@in2p3.fr 9

Semiconductors : generalities : junction detectors

A p‐n junction is formed when asingle crystal of semiconductor is doped with acceptors on one side and donors on the other

Jean-Marie Brom (IPHC) – brom@in2p3.fr 10

Semiconductors : generalities : junction detectors

Jean-Marie Brom (IPHC) – brom@in2p3.fr 11

Semiconductors : generalities : reverse biasing scheme

The p – n zones will be used for contactand to block (Blocking Contacts) the undesired noise    

Jean-Marie Brom (IPHC) – brom@in2p3.fr 12

Semiconductors : generalities : building

DC Coupling Silicon detector

Jean-Marie Brom (IPHC) – brom@in2p3.fr 13

Semiconductors : generalities : building

AC Coupling Silicon detector

Jean-Marie Brom (IPHC) – brom@in2p3.fr 14

Semiconductors : generalities : building

AC coupled Si detectors create 2 electrical circuits :

‐ Read‐out circuit to the amplifier (AC current)

‐ Biasing circuit (DC current) 

Jean-Marie Brom (IPHC) – brom@in2p3.fr 15

AC Coupling Silicon detector : bias voltage system

Semiconductors : generalities : building

Jean-Marie Brom (IPHC) – brom@in2p3.fr 16

Most commonly scheme AC + poly S‐bias resistor

Semiconductors : Si detectors designs

Jean-Marie Brom (IPHC) – brom@in2p3.fr 17

Semiconductors : Si detectors designs

CMS design ATLAS design

Jean-Marie Brom (IPHC) – brom@in2p3.fr 18

Semiconductors : Si detectors designs

Jean-Marie Brom (IPHC) – brom@in2p3.fr 19

Semiconductors : Radiation Damage

Two types of radiation damage :

Bulk (Crystal) damage due to Non Ionizing Energy Loss (NIEL)‐ displacement damage, built up of crystal defects –

Change of effective doping concentration (higher depletion voltage, under‐ depletion)

Increase of leakage current (increase of noise, thermal runaway)Increase of  charge carrier trapping (loss of charge)

Surface damage due to Ionizing Energy Loss (IEL)‐ accumulation of positive in the oxide (SiO2) and the Si/SiO2 interface –

affects:  interstrip capacitance (noise factor), breakdown behavior, …

Impact on detector performance(depending on detector type and geometry and readout electronics!)

Signal/noise ratio is the quantity to watch  Sensors can fail from radiation damage !

Jean-Marie Brom (IPHC) – brom@in2p3.fr 20

Semiconductors : Effect of radiations

Charge > 200 V above Vfd

12000

14000

16000

18000

20000

22000

24000

26000

0 2E+14 4E+14 6E+14 8E+14 1E+15 1.2E+15

eq [cm-2]

mos

t pro

babl

e ch

arge

[e]

Fz n-p (2551-7)Fz n-n (2535-11)MCz n-p (2552-7)MCz n-n (2553-11)MCz n-p (W184)MCz n-pFz n-psimulation neutrons - low limitssimulation protons - low limitssimulation protos - nominal"simulation neutrons - nominal"bh=2.5, be=2.1

Loss of collected charges(new 300 µm Silicon ≈ 24 000 e‐ for 1 MIP)  

tQtQ

heeffhehe

,,0,

1exp)(

Trapping is characterized by an effective trapping time eff for electrons and holes:

where

defectsheeff

N,

1

Jean-Marie Brom (IPHC) – brom@in2p3.fr 21

Semiconductors : Effect of radiations

Increase of Leakage current

Jean-Marie Brom (IPHC) – brom@in2p3.fr 22

Semiconductors : Effect of radiations

Change in depletion voltage and type inversion

before inversion

after inversion

n+ p+ n+p+

Innermost layersshould still work afterΦ 10

Jean-Marie Brom (IPHC) – brom@in2p3.fr 23

Semiconductors : 2‐dimensional detectors

Double Sided Silicon Detectors (DSSD) Not much in use…

Jean-Marie Brom (IPHC) – brom@in2p3.fr 24

Semiconductors : 2‐dimensional detectors

Stereo Modules

Jean-Marie Brom (IPHC) – brom@in2p3.fr 25

Semiconductors : Performance

Jean-Marie Brom (IPHC) – brom@in2p3.fr 26

Semiconductors : Pixels Detectors

Pixel sizes :ATLAS : 50 µm x 400 µmCMS :   100 µm x 150 µmALICE : 50 µm x 425 µm

Jean-Marie Brom (IPHC) – brom@in2p3.fr 27

Semiconductors : Pixels Detectors

CONNECTION BY BUMP BONDING

Jean-Marie Brom (IPHC) – brom@in2p3.fr 28

Semiconductors : Pixels Detectors

Pitch : 50 µm

(wire bonding typically 200µm)

Jean-Marie Brom (IPHC) – brom@in2p3.fr 29

CMS  ≈ 215 m2

ATLAS  ≈ 61 m2

LHCb ≈ 12.5 m2

ALICE  ≈ 1.5 m2

CDF  ≈ 3.5 m2

NA 11 DELPHI

Semiconductors : Silicon history

CDF

Jean-Marie Brom (IPHC) – brom@in2p3.fr 30

Semiconductors : CMS Silicon Detector

Jean-Marie Brom (IPHC) – brom@in2p3.fr 31

Semiconductors : CMS Silicon Detector

Jean-Marie Brom (IPHC) – brom@in2p3.fr 32

Semiconductors : ATLAS  Silicon Detector

Jean-Marie Brom (IPHC) – brom@in2p3.fr 33

Semiconductors : ATLAS  Silicon Detector

Jean-Marie Brom (IPHC) – brom@in2p3.fr 34

Semiconductors : CMS and ATLAS  Silicon Detector

ATLAS : Si Pixels + Si Strips + Gas TRDCMS : Si Pixels + Si Strips

Jean-Marie Brom (IPHC) – brom@in2p3.fr 35

Semiconductors : Challenges and Evolutions

Main Challenge : The LHC at High Luminosity (2024 ?)

More tracks : Occupancy increases ‐ Less resolutionMore Flux :      Radiation (bulk) damage

Jean-Marie Brom (IPHC) – brom@in2p3.fr 36

Reduce the Occupancy : Increase the granularityMini‐strips sensors (reduce lenght from 10 cm to 5 cm)

‐ Increases the number of channels‐ Increases the cost‐ Increases the power to be dissipated(already3kW in CMS, at ‐10°C)

Reduce the material : Thin Si sensors‐ Reduce the Charges Collected

Reduce the number of layers‐ Reduce the overall Tracker efficiency

300 µm  150 µm 

Semiconductors : Challenges and Evolutions

Jean-Marie Brom (IPHC) – brom@in2p3.fr 37

Change the material : Oxygenated Silicon

HE detectrors : FZ (Float Zone) Crystal    ‐ High resistivity > 3‐4 kΩcm‐ O2 contens < 50 10 16

New Materials : DOFZ : O2 doped FZ Silicon (Oxydation of wafer at high temperature) 

MCZ (Magnetic Czochralki)  ‐ Less resistivity ≈ 1.5 kΩcm‐ O2 contens > 5 10 17

EPITAXIAL growth : Chemical Vapor Deposition on CZ substrate

0 50 100 150 200 250depth [m]

51016

51017

51018

5

O-c

once

ntra

tion

[cm

-3]

51016

51017

51018

5

Cz as grown

DOFZ 72h/1150oCDOFZ 48h/1150oCDOFZ 24h/1150oC [G.Lindstroem et al.]

Oxygen concentration in DOFZ0 10 20 30 40 50 60 70 80 90 100

Depth [m]

51016

51017

51018

5

O-c

once

ntra

tion

[1/c

m3 ]

SIMS 25 m SIMS 25 m

25 m

u25

mu

SIMS 50 mSIMS 50 m

50 m

u50

mu

SIMS 75 mSIMS 75 m

75 m

u75

mu

simulation 25 msimulation 25 msimulation 50 msimulation 50 msimulation 75msimulation 75m

EPIlayer CZ substrate

Oxygen concentration in Epitaxial

Semiconductors : Challenges and Evolutions

Jean-Marie Brom (IPHC) – brom@in2p3.fr 38

24 GeV/c proton irradiation

0 2 4 6 8 10proton fluence [1014 cm-2]

0

200

400

600

800

Vde

p [V

]

0

2

4

6

8

10

12

Nef

f [10

12 c

m-3

]

CZ <100>, TD killedCZ <100>, TD killedMCZ <100>, HelsinkiMCZ <100>, HelsinkiSTFZ <111>STFZ <111>DOFZ <111>, 72 h 11500CDOFZ <111>, 72 h 11500C Standard FZ silicon

• type inversion at ~ 21013 p/cm2

• strong Neff increase at high fluence

Oxygenated FZ (DOFZ)• type inversion at ~ 21013 p/cm2

• reduced Neff increase at high fluence

CZ silicon and MCZ silicon no type inversion in the overall fluence range (verified by TCT measurements)

(verified for CZ silicon by TCT measurements, preliminary result for MCZ silicon) donor generation overcompensates acceptor generation in high fluence range

Common to all materials (after hadron irradiation): reverse current increase increase of trapping (electrons and holes) within ~ 20%

Semiconductors : Challenges and Evolutions

Jean-Marie Brom (IPHC) – brom@in2p3.fr 39

Semiconductors : Challenges and Evolutions

MAPS (Monolithic Active Sensor) or CMOS (Complementary Metal Oxide Semiconductor)

Jean-Marie Brom (IPHC) – brom@in2p3.fr 40

Semiconductors : Challenges and Evolutions

3D Silicon Detectors

Manufacturing challenge Electrodes : dead zones

Efficiency vs fluence 

Jean-Marie Brom (IPHC) – brom@in2p3.fr 41

Semiconductors : diamonds

Diamond detectors

CVD Diamond

Si

Z 6 14

Energy Gap 5,5 eV 1,21 to 1,1eV

Resistivity 1013 – 1016Ωcm

105 – 106Ωcm

Breakdown 107 V/cm 3.105 V/cm

Mobility (electrons) 2000 cm2/V/s

1350 cm2/V/s

Mobility (holes) 1600 cm2/V/s

480 cm2/V/s

Displacement Energy (e‐) 43 eV/atom

13 à 20 eV/atom

Pairs Creation 13 eV 3.6 eV

Charge Collection Distance 250 m 100 m ?

Mean signal (MIP) 3600 e‐ / m

8900 e‐ / m

Dielectric Constant 5.5 10 à 12

Thermal Conductivity (W/m∙K)

1600 ‐2000

150

Diamond is better than SiliconDoes not need any dopingBetter radiation hardnessBetter thermal conductivityBetter speed (1psec vs 1 nsec)Light insensitiveMulti‐metalization possible

(test and physics) But :

3 times less signal for MIPs (3.6 / 13)Difficult to manufactureExpensiveDiamond is not understood (at the moment)

2 forms :PolycristallineWafer max.6 inches

Monocrystallinemax : 4 x 4  mm 2

Jean-Marie Brom (IPHC) – brom@in2p3.fr 42

Semiconductors : Diamonds

CCD :  CHARGE COLLECTION DISTANCE

Energy loss (Bethe‐Bloch 1932)

Charge transportation (Hecht 1932)

= e + h = (e e +h h ) E : mean drift distance (mean free path of the carrier) : mobility : lifetimeE : applied electric field

CHARGE COLLECTION DISTANCE :

Si (mono) = 100m

Si (amorphe) =10 µm

Diam  = 0(100µm)

Jean-Marie Brom (IPHC) – brom@in2p3.fr 43

Semiconductors : Diamonds

CCD :  MEASUREMENT

Collected charge: QQ 0Ld

E)...(d hhee Charge  Collection Distance  :

Pairs / MIP : 3600 /  100 µ diamant)

36d Nélectrons

CCD : Measurement of  diamond quality (pCVD ou sCVD)

For particle detection :Nélectrons (MIP)  ~ 10 000Thickness (Xo…)  ~ 300 µm

CCD ~ 280 µm

CCD OK, but different shapes ?

Jean-Marie Brom (IPHC) – brom@in2p3.fr 44

Semiconductors : Diamonds

Diamant ?

Natural diamond:  Lots of impuritiesLots of defects

Diamant HPHT (High Pressure – High Temperature) 1940P > 50 000 barsT > 2000 °C

MonocrystalDimension (few mm2) Impurities 

Diamant CVD (Carbon Vapor Deposition)  1980Plasma CH4 – H2 (+X…)

P  0,1 barT 1000 °K

Slow deposition on substrate1 – 50 µm / heure

Jean-Marie Brom (IPHC) – brom@in2p3.fr 45

Semiconductors : Diamonds

Polycristalline CVD (pCVD)Grows on any substrate (Si)Slow process (around 1µm / h)Cristal bigger along the processIndustrial well controlled process

Substrate

Gowth zoneBig cristalsCCD  OK

1 mm = 1000 h !!

Nucleation zoneSmall cristalsLots of boundaries

300 µm

Jean-Marie Brom (IPHC) – brom@in2p3.fr 46

Semiconductors : Diamonds

Monocrystalline CVD (sCVD)Grows only on another monocrystal (HPTHT seed)small  dimensions (typical 4 x 4 mm2)faster processus :  25 µm /h)Very few industrial manufacturers

Cristal

Seed

Jean-Marie Brom (IPHC) – brom@in2p3.fr 47

Semiconductors : Diamonds

JM Brom LAPP

Finishing :

pCVD : Nucleation (small grains) supppression)

sCVD : Seed suppression

Métalisation (cf bonding)

charactérisation (CCD…)

CleaningRe‐métalisation

Monocristal CVD

seed HPHT

Jean-Marie Brom (IPHC) – brom@in2p3.fr 48

Semiconductors : Diamonds

JM Brom LAPP

APPLICATIONS IN HEP EXPERIMENTS

Beam Conditions MonitorsBeam Loss Monitors

BaBarCDFATLAS – CMS  ‐ LHCb

MAPS vertical integration(Heat Dissipation)Since 2007

Principe :Continuous current measurementwith field  E ~ 1 V / µ

Jean-Marie Brom (IPHC) – brom@in2p3.fr 49

Semiconductors : Diamonds

CDF at FermilabConclusion : Diamond is OK for beam condition monitor

Jean-Marie Brom (IPHC) – brom@in2p3.fr 50

Semiconductors : Diamonds

Idea in 1995  :  Diamond is more resistant than Siliconcan it be used for tracking in very difficult conditions ?

at 4 cm ~1.4 ÷ 1.6 1016 neq/cm2 mainly charged at r> 60cm ~1 ÷ 3 1014 neq/cm2 mainly neutral

LHC Phase II :

2/22/2017 A.Messineo / conveners CERN June 3rd SUWG meeting

High fluence regimeCharged particlespredominant

Low fluence regimeNeutral particlespredominant

Medium fluence regimeCombined Charged and neutral particles

Dat

a an

d si

mul

atio

ns a

gree N

ot a

cle

ar p

ictu

re

Mix

ed ir

radi

atio

nne

w o

ptio

ns/s

cena

rio

Present TrackerLayers radii

L= 8 x 1034

r (cm) X 1013 cm-2 % charged % neutral

4,30 1509,97 84,5 15,57,10 622,76 82,0 18,011,00 297,74 78,7 21,322,00 117,71 69,2 30,832,00 72,39 63,6 36,441,00 54,55 59,1 40,949,00 43,40 55,8 44,258,00 35,47 51,8 48,274,50 19,35 26,0 74,082,50 17,27 21,9 78,190,50 15,78 18,5 81,598,50 14,33 13,9 86,1114,50 12,79 8,4 91,6

Jean-Marie Brom (IPHC) – brom@in2p3.fr 51

Semiconductors : Diamonds

CVD diamond already tested as pixel sensorsBy ATLAS (pCVD) By CMS (sCVD)

Correct…

But onlyonce…

Jean-Marie Brom (IPHC) – brom@in2p3.fr 52

Semiconductors : Diamonds

THE CMS PLT 

Failure …

Jean-Marie Brom (IPHC) – brom@in2p3.fr 53

Semiconductors : Diamonds

Why ? ‐ Industrial manufacturers (industrial secrets)‐ Characterisation test : CCD measuremen t for a short time.‐ lack of information within the community.‐ Particle physicists are NOT solid state physicists.

The fundamental problems is : Understanding what makes a ’’good’’ diamond

MONODIAM‐HE Project  (ANR‐12‐BS05‐0014)

Work with a laboratory expert in growing diamonds (LSPM – Paris)‐ growing sCVD and comparison with industrial sCVDs‐ Understanding the important parameters‐ Improving the quality (for tracking at HE)

Jean-Marie Brom (IPHC) – brom@in2p3.fr 54

Semiconductors : Diamonds

Answering some questions :

‐ Important parameters for growing diamond (the recipe)‐ Important parameters for preparing the diamond‐ Important parameters to watch

‐ Nitrogen contens‐ Surface finishing‐ Metallisation‐ Long term

JM Brom  LPSC‐Grenoble 9 juin 2015

1. Growing conditions : Nitrogen impurities

Adding Nitrogen :Strong effect on growth rates (up to 100 µ/h )

Twinning at the edgesLimitation of twinning at the surfaceEffect on CCD

(incorporation of N2 in the crystal)

Increasing N2 impurities

Industrial sCVD(no N2 ?)

Laboratory sCVD(2 ppm N2 )

Prototypes made at LSPM with variable N2 contents

JM Brom  LPSC‐Grenoble 9 juin 2015

thickness N2 cont. CCD max.

CCDNorm.

HT Lim

518 0 512 99 500

582 0 499 86 500

500 0,5 530 106 500

430 1 412 103 400

452 1  550 122 500

571 2 410 72 500

518 4 130 25 1500

20

40

60

80

100

120

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

AT1502 ‐0ppmAT1503‐ 0ppmAT1319‐0,5ppmAT1355 ‐1ppmAT1514‐1ppmAT1515‐2ppmAT1401‐4ppm

CCD (µ) vs field ‐ variable N2 concentration

0

0,5

1

1,5

0 1 2 3 4

Normalized CCD vs N2 contens at max field

Optimal : 0 to 1 ppm

Study made on several prototypes‐ same laboratory (LSPM)‐ same growing protocol‐ same finishing‐ same metallisation‐ variable N2 contents

2. Surface finishing

Evaluation of the quality of a diamond detector :Measurement of the CCD using MIP (90 Sr)Need : 10 000 e‐ :  CCD ≈  280 – 300µ

≈ 100% for a 300µ sCVD

Example :Industrial sCVDThickness : 635 µCCD about 600 µ

Observation :2 possible problems :

‐ CCD not correct (less than 10000 e‐ )‐ High voltage limitation (less than 1V/µ )

Possibility ?CCD related to defects (traps) in the bulkHV limitation due to surface problems

Use 4 LSPM prototypes sCVD (MM7‐ 1 to 4)grown under the same conditionsin the same reactorat the same timeprepared the same way (same company)

laser cut to separate the HPHT seedprecise polishing

Cleanedmetallised (Cr‐Au) in laboratoryMeasured (CCD and HV limts)

Use 1 industrial (good) sCVD (IND‐1)

JM Brom  LPSC‐Grenoble 9 juin 2015

Reprocessing :MM7‐1  : precise re‐polishing by another company (specialized in pCVD)MM7‐ 2 : re‐etched by RIE at laboratoryMM7‐ 3 : Terminated by VUV (172nm) in O2 flux MM7‐ 4 : untouched . For calibration IND ‐ 1  : badly re‐polished (on purpose)

And metallisation Cr‐Au

Before reprocessing After reprocessing ObservationsCVD Side 1 Side 2 Side 1 Side 2

IND ‐ 1 500V 600V 500V 300V degradationMM7‐1 600V 400V 600V 400V sameMM7‐2 200V 400V 400V 500V ImprovementMM7‐3 100V 100V 300V 100V Little improvementMM7‐4 500V 350V 500V 400V same

On HV Limits

As good as it is , polishing may not be enough…Reactive Ion etchingOzonization(and probably very agressive cleaning)

Seems to be having an effect on the HV limitation

JM Brom  LPSC‐Grenoble 9 juin 2015

050100150200250300

0 100 200 300 400 500 600 700

CCD (M

icrons)

HV (V)

CCD after Reprocessing

MM7‐1 S1MM7‐1 S2MM7‐2 S1MM7‐2 S2MM7‐3 S1MM7‐3 S2MM7‐4 S1MM7‐4 S2

050

100150200250300

0 100 200 300 400 500 600

CCD (m

icrons)

CCD before Reprocessing

MM7‐1 S1

MM7‐1 S2

MM7‐2 S1

MM7‐2 S2

MM7‐3 S1

MM7‐3 S2

Reprocessinghas a little effect on CCD(given the measuerment

uncertainties)

Conclusion :‐ CCD is related to Bulk quality‐ HV limitation is related to surface quality

and may be improved.

JM Brom  LPSC‐Grenoble 9 juin 2015

3. Metallisation Metallisation needed for contacts (wire bonding or bump‐bonding)Early prototypes showed a Schottky Diode BehaviourExtensive researches on diamond contacts

see, for example «

Use Two (industrial) reference detectorsmetalised Cr‐AuTested on different benches

CleanedMetallisation (pulverisation)Tests :  Cr‐ Au

WCuAlIn (Cu‐In)

At LSPC‐Grenoble Metal deposition byby microwave plasma‐assisted sputteringCleaning by 2 steps of plasma‐assisted cleaning

At Icube ‐ StrasbourgMetal deposition byVacuum evaporation Cleaning by Hot H2S04 – KNO3

JM Brom  LPSC‐Grenoble 9 juin 2015

Cr‐Au :  HT limits 500V     / 400VCCD       440 µm / 420 µm

W  :  HT limits 500V  / 450VCCD  440 µm / 420 µm

Al  :  HT limits 500V  / 500VCCD  440 µm / 440 µm

Cu  :  HT limits 500V     / 500VCCD  425 µm / 425 µm

Cu‐In :  HT limits 500V / 500VCCD  410 µm / 410 µm

Cr‐Au W Al

Cu Cu‐In

JM Brom  LPSC‐Grenoble 9 juin 2015

Ti‐Au AlW

Cu Cu‐In

Ti‐Au :  HT limit 500V     / 500VCCD       380 µm / 380 µm

W  :  HT limit 500V     / 500VCCD  425 µm / 425 µm

Al  :  HT limit 500V    /  500VCCD  460 µm / 460 µm

Cu  :  HT limit 500V     / 500VCCD  410 µm / 410 µm

Cu‐In :  HT limit 500V / 450VCCD  410 µm / 420 µm

Various metallisations have very little effect on CCD (Schottky element already stabilized by cleaning ?)

HT limit related to surface quality

JM Brom  LPSC‐Grenoble 9 juin 2015

4. Bulk Studies By Cathodo‐luminescence at low temperature(electron beam 10kV, 7nA – T=110°K)

0

2 000

4 000

6 000

8 000

10 000

12 000

14 000

16 000

18 000

Inte

nsité

(cou

ps)

200 250 300 350 400 450 500 550 600 650 700 750 800Longueur d’onde (nm)

Pic excitonique Réplique 2 du Pic excitonique

SiLarge defects

Réplique 3 du Pic excitonique

0

1 000

2 000

3 000

4 000

5 000

6 000

7 000

8 000

9 000

10 000

11 000

12 000

13 000

Inte

nsité

(cou

ps)

200 250 300 350 400 450 500 550 600 650 700 750 800Longueur d’onde (nm)

Réplique 2 du Pic excitonique

Réplique 3 du Pic excitonique

Possibly nitrogen relatedcenter (533nm) – low doping 

200

400

600

800

1 000

1 200

1 400

1 600

1 800

2 000

Inte

nsité

(cou

ps)

250 300 350 400 450 500 550 600 650 700 750 800Longueur d’onde (nm)

Lab – 0.5 ppm  N2

Industrial

Lab – 2 ppm  N2

Lab – 0.5 ppm  N2 : Limit HT, limited CCDLab – 2 ppm N2     :  HT OK, CCD OKInd ‐ ? :   HT OK, CCD OK

Radiation damage

One can see clearly the presence of NitrogenThere are extended defects in all diamondsTest under source (74 MBq ) induces damages: Radiation hardness ?

250 300 400 500 700600 800 nm

JM Brom  LPSC‐Grenoble 9 juin 2015

0

2 000

4 000

6 000

8 000

10 000

12 000

14 000

16 000

18 000

Inte

nsité

(cou

ps)

200 250 300 350 400 450 500 550 600 650 700 750 800Longueur d’onde (nm)

0

5 000

10 000

15 000

20 000

25 000

30 000

35 000

Inte

nsité

(cou

ps)

200 250 300 350 400 450 500 550 600 650 700 750 800Longueur d’onde (nm)

0

1 000

2 000

3 000

4 000

5 000

6 000

7 000

8 000

9 000

10 000

11 000

12 000

13 000

Inte

nsité

(cou

ps)

200 250 300 350 400 450 500 550 600 650 700 750 800Longueur d’onde (nm)

0

5 000

10 000

15 000

20 000

25 000

30 000

35 000

40 000

45 000

50 000

Inte

nsité

(cou

ps)

200 250 300 350 400 450 500 550 600 650 700 750 800Longueur d’onde (nm)

Lab – 0.5 ppm  N2Growth Side – CCD 530 µm 

Lab – 0.5 ppm  N2Nucleation Side – CCD 420 µm

Lab – 0.5 ppm  N2Growth Side – CCD 390  µm

Lab – 0.5 ppm  N2Nucleation Side – CCD 210  µm

HPHT seed

sCVD

Growth Side

Nucleation Side

More extended defects on the nucleation side (HPHT mirror effect)Even the sCVD are asymetrics (known for the pCVDs)

(with consequences on the CCD)

500400250 600 800 nm300 700

JM Brom  LPSC‐Grenoble 9 juin 2015

5. Bulk and surface Studies By Images (Fluorescence / polarised light / X‐ray Tomography)

LSPM – 0 ppm N2results on CCD OK

LSPM – 1 ppm N2results on CCD OK

Industryresults on CCD very good

All sCVD show defects‐ deep dislocations‐ bad polishing‐ N2 incorporation‐ …

JM Brom  LPSC‐Grenoble 9 juin 2015

6. Long term effects – ‘’Polarisation’’ ?

Long term measurement leakage current at max field ( ≈1 V/µm)

Total time : 3mins

Back to normal after 20 mins

Slow and continuous increase over 100 hours (about 15%)

Total time : 3 hours

74 MBq sourceClear source effect‘’ slow ‘’ discharges (charging – discharging of traps)

JM Brom  LPSC‐Grenoble 9 juin 2015

Total time : 100 h

Total time : 100 h

0

100

200

300

400

500

600

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0

C‐SideS‐Side

CCD vs Field E6‐1 Cu 

Difference between sidesLower CCD on the nucleation sideMore defects (traps) on the nucleation side

For a ‘’good’’ (industrial)  sCVD

0

10000

20000

30000

40000

AT1319 ‐ Cr‐Au ‐ Nucleation side 500V Total time : 150  h

0

500

1000

1500

2000

2500

AT1319 ‐ Cr‐Au ‐ Growing side 500V Total time : 150 h

0

100

200

AT1319 ‐ Cr‐Au ‐ Growing side 500V Total time : 3h

0

5000

10000

15000

AT1319 ‐ Cr‐Au ‐ Nucleation side 500V       Total time : 3  h

pA

pA

pA pA

Strong difference between sidesMore defects (traps) on the nucleation sideCould be a way to evaluate the defects rate ??

JM Brom  ‐ VCI feb 2016

Conclusion and prospectives (?)

We have started to adress fundamental problems :

Diamond bulk effectsimpurities (Nitrogen – Boron)bulk defects importance

defects rate have to be understood, and under controlsome ideas exist : 

differential growing, immediate anealing, disorientation)

Diamond surface effectssurface finishingmetallisation

problem considered as solved (?)

The main lesson :True :     

Developpements in the Research Community may lead to Industrial Developpements.

Wrong : Objects developped in the Industrial World can be easily used in the 

Research Community.