Large-Scale Structure & Surveys Max Tegmark, MIT.

Post on 20-Jan-2016

221 views 2 download

Transcript of Large-Scale Structure & Surveys Max Tegmark, MIT.

Large-Scale Structure & Surveys

Max Tegmark, MITMax Tegmark, MIT

Max TegmarkDept. of Physics, MIT

tegmark@mit.eduCosmologia en la Playa

January 11-15, 2010

Onion

Teg

mar

k 20

02, S

cien

ce, 2

96, 1

427-

33

Summary of last lecture

Fluctuation generator

Fluctuation amplifier

(Graphics from Gary Hinshaw/WMAP team)

Hot Dense SmoothCool Rarefied

Clumpy

Summary of last lecture

400

SN Ia+CMB+LSS constraintsYun Wang & MT 2004, PRL 92,

241302

Assumes k=0

Vanilla rules OK!

0th order: what we’ve learned about our expansion history

Summary of last lecture

Max TegmarkDept. of Physics, MIT

tegmark@mit.eduCosmologia en la Playa

January 11-15, 2010

Ly

LSS

Clusters

Lensing

Tegmark & Zaldarriaga, astro-ph/0207047 + updates

CMB

1st order: what we’ve learned about cosmic clustering

Summary of last lecture

Max TegmarkDept. of Physics, MIT

tegmark@mit.eduCosmologia en la Playa

January 11-15, 2010

1st order: what we’ve learned about cosmic clustering

Summary of last lecture

Max TegmarkDept. of Physics, MIT

tegmark@mit.eduCosmologia en la Playa

January 11-15, 2010

000619DO ANY OF THESE QUESTIONS CONFUSE YOU?

1. What is the Universe expanding into?

2. How can stuff be more than 14 billion light years away when the Universe is only 14 billion light years old?

3. Where in space did the Big Bang explosion happen?

4. Did the Big Bang happen at a single point?

5. How could a the Big Bang create an infinite space in a finite time?

6. How could space not be infinite?

7. If the Universe is only 10 billion years old, how can we see objects that are now 30 billion light years away?

8. Don’t galaxies receeding faster than c violate relativity theory?

9. Are galaxies really moving away from us, or is space just expanding?

10. Is the Milky Way expanding?

11. Do we have evidence for a Big Bang singularity?

12. What came before the Big Bang?

13. Should I feel insignificant?

QuickTime™ and a decompressor

are needed to see this picture.

The cosmic plan:• Survey of cosmology basics

• Measuring large-scale structure with galaxy surveys

• Measuring large-scale structure neutral hydrogen

L1:

L3:

L2:

Max TegmarkDept. of Physics, MIT

tegmark@mit.eduCosmologia en la Playa

January 11-15, 2010

Springel, Frenk & White 2006,

Nature, 440, 11

Measuring large-scale structure with galaxy surveys:what are the challenges?

• Statistical errors - Sample variance: want big V - Shot noise: want large n• Systematic errors - Dust extinction (angular selection function) - Radial selection function errors• Data analysis - Survey geometry (window functions) - Numerical challenges • Linking light to mass: - bias - redshift distortions - nonlinearities

P ~ N-1/2(P+n-1)N ~ V k^3

So aim for as large V as possible with nP~1

Max TegmarkDept. of Physics, MIT

tegmark@mit.eduCosmologia en la Playa

January 11-15, 2010

LSSde Lapparent, Geller & Huchra 1986

Max TegmarkDept. of Physics, MIT

tegmark@mit.eduCosmologia en la Playa

January 11-15, 2010

LSS

Max TegmarkDept. of Physics, MIT

tegmark@mit.eduCosmologia en la Playa

January 11-15, 2010

LSS

Cmbgg OmOl

LSS

Max TegmarkDept. of Physics, MIT

tegmark@mit.eduCosmologia en la Playa

January 11-15, 2010

Galaxy power spectrum measurements 1999(Based on compilation by Michael Vogeley)

Max TegmarkDept. of Physics, MIT

tegmark@mit.eduCosmologia en la Playa

January 11-15, 2010

PSCz 15000 gals:

(Data points uncorrelated)

(Hamilton, Tegmark & Padmanabhan 2000)

Max TegmarkDept. of Physics, MIT

tegmark@mit.eduCosmologia en la Playa

January 11-15, 2010

SDSS 2006:

2dFGRS 250000 gals

SDSS DR4 400000 gals, now ~106 gals

Max TegmarkDept. of Physics, MIT

tegmark@mit.eduCosmologia en la Playa

January 11-15, 2010

APO

SDSS

Max TegmarkDept. of Physics, MIT

tegmark@mit.eduCosmologia en la Playa

January 11-15, 2010

SDSS Zoom

SDSS

Cmbgg OmOl

Max TegmarkDept. of Physics, MIT

tegmark@mit.eduCosmologia en la Playa

January 11-15, 2010

(Table from Natalie Roe)

SOME SURVEYS TO LOOK FORWARD TO:

Max TegmarkDept. of Physics, MIT

tegmark@mit.eduCosmologia en la Playa

January 11-15, 2010

LAMOST: The Large Sky Area Multi-Object Fibre Spectroscopic Telescope

QuickTime™ and a decompressor

are needed to see this picture.

Measuring large-scale structure with galaxy surveys:what are the challenges?

• Statistical errors - Sample variance: want big V - Shot noise: want large n• Systematic errors - Dust extinction (angular selection function) - Radial selection function errors• Data analysis - Survey geometry (window functions) - Numerical challenges • Linking light to mass: - bias - redshift distortions - nonlinearities

P ~ N-1/2(P+n-1)N ~ V k^3

So aim for as large V as possible with nP~1

Max TegmarkDept. of Physics, MIT

tegmark@mit.eduCosmologia en la Playa

January 11-15, 2010

Why are LRGs so useful?

Max TegmarkDept. of Physics, MIT

tegmark@mit.eduCosmologia en la Playa

January 11-15, 2010

HistoryCMB

For

egro

und-

clea

ned

WM

AP

map

fro

m T

egm

ark,

de

Oli

veir

a-C

osta

& H

amil

ton,

ast

ro-p

h/03

0249

6Our observable

universe

LSS

Our observable universe

LSS

Our observable universe

Max TegmarkDept. of Physics, MIT

tegmark@mit.eduCosmologia en la Playa

January 11-15, 2010

LSS

Quasars

Max TegmarkDept. of Physics, MIT

tegmark@mit.eduCosmologia en la Playa

January 11-15, 2010

LSS

LRG’s

Max TegmarkDept. of Physics, MIT

tegmark@mit.eduCosmologia en la Playa

January 11-15, 2010

LSS

Common galaxies

Max TegmarkDept. of Physics, MIT

tegmark@mit.eduCosmologia en la Playa

January 11-15, 2010

LSS

Common gals: too dense

Quasars: too sparse

LRG’s: just right!

Why LRG’s are “Goldilocks galaxies”:60000 LRG’s have more statistical power than 2 million regular gals

• Statistical errors - Sample variance: want big V - Shot noise: want large n• Systematic errors - Dust extinction (angular selection function) - Radial selection function errors• Data analysis - Survey geometry (window functions) - Numerical challenges • Linking light to mass: - bias - redshift distortions - nonlinearities

Measuring large-scale structure with galaxy surveys:what are the challenges?

P ~ N-1/2(P+n-1)N ~ V k^3

So aim for as large V as possible with nP~1

Max TegmarkDept. of Physics, MIT

tegmark@mit.eduCosmologia en la Playa

January 11-15, 2010

Sky coverage of SDSS DR4 redshift survey

(Aitoff projection, equatorial coordinates)

(Dust map fromSchlegel, Finkbeiner & Davis)

Max TegmarkDept. of Physics, MIT

tegmark@mit.eduCosmologia en la Playa

January 11-15, 2010

Cmbgg OmOl

Measuring large-scale structure with galaxy surveys:what are the challenges?

• Statistical errors - Sample variance: want big V - Shot noise: want large n• Systematic errors - Dust extinction (angular selection function) - Radial selection function errors• Data analysis - Survey geometry (window functions) - Numerical challenges • Linking light to mass: - bias - redshift distortions - nonlinearities

P ~ N-1/2(P+n-1)N ~ V k^3

So aim for as large V as possible with nP~1

Max TegmarkDept. of Physics, MIT

tegmark@mit.eduCosmologia en la Playa

January 11-15, 2010

Max TegmarkDept. of Physics, MIT

tegmark@mit.eduCosmologia en la Playa

January 11-15, 2010

MT, Hamilton, Strauss, Vogeley & Szalay 1998

SDSS

Max TegmarkDept. of Physics, MIT

tegmark@mit.eduCosmologia en la Playa

January 11-15, 2010

Max TegmarkDept. of Physics, MIT

tegmark@mit.eduCosmologia en la Playa

January 11-15, 2010

Max TegmarkDept. of Physics, MIT

tegmark@mit.eduCosmologia en la Playa

January 11-15, 2010

Max TegmarkDept. of Physics, MIT

tegmark@mit.eduCosmologia en la Playa

January 11-15, 2010

Max TegmarkDept. of Physics, MIT

tegmark@mit.eduCosmologia en la Playa

January 11-15, 2010

Max TegmarkDept. of Physics, MIT

tegmark@mit.eduCosmologia en la Playa

January 11-15, 2010

Max TegmarkDept. of Physics, MIT

tegmark@mit.eduCosmologia en la Playa

January 11-15, 2010

Max TegmarkDept. of Physics, MIT

tegmark@mit.eduCosmologia en la Playa

January 11-15, 2010

Max TegmarkDept. of Physics, MIT

tegmark@mit.eduCosmologia en la Playa

January 11-15, 2010

Max TegmarkDept. of Physics, MIT

tegmark@mit.eduCosmologia en la Playa

January 11-15, 2010

Max TegmarkDept. of Physics, MIT

tegmark@mit.eduCosmologia en la Playa

January 11-15, 2010

LSS

Max TegmarkDept. of Physics, MIT

tegmark@mit.eduCosmologia en la Playa

January 11-15, 2010

Max TegmarkDept. of Physics, MIT

tegmark@mit.eduCosmologia en la Playa

January 11-15, 2010

Max TegmarkDept. of Physics, MIT

tegmark@mit.eduCosmologia en la Playa

January 11-15, 2010

Max TegmarkDept. of Physics, MIT

tegmark@mit.eduCosmologia en la Playa

January 11-15, 2010

Max TegmarkDept. of Physics, MIT

tegmark@mit.eduCosmologia en la Playa

January 11-15, 2010

Max TegmarkDept. of Physics, MIT

tegmark@mit.eduCosmologia en la Playa

January 11-15, 2010

Max TegmarkDept. of Physics, MIT

tegmark@mit.eduCosmologia en la Playa

January 11-15, 2010

Sky coverage of SDSS DR4 redshift survey

(Aitoff projection, equatorial coordinates)

(Dust map fromSchlegel, Finkbeiner & Davis)

Max TegmarkDept. of Physics, MIT

tegmark@mit.eduCosmologia en la Playa

January 11-15, 2010

Max TegmarkDept. of Physics, MIT

tegmark@mit.eduCosmologia en la Playa

January 11-15, 2010

Bias

Measuring large-scale structure with galaxy surveys:what are the challenges?

• Statistical errors - Sample variance: want big V - Shot noise: want large n• Systematic errors - Dust extinction (angular selection function) - Radial selection function errors• Data analysis - Survey geometry (window functions) - Numerical challenges • Linking light to mass: - bias - redshift distortions - nonlinearities

P ~ N-1/2(P+n-1)N ~ V k^3

So aim for as large V as possible with nP~1

Max TegmarkDept. of Physics, MIT

tegmark@mit.eduCosmologia en la Playa

January 11-15, 2010

Virgo LCDM simulation

CMB

Max TegmarkDept. of Physics, MIT

tegmark@mit.eduCosmologia en la Playa

January 11-15, 2010

SDSS galaxies

CMB

Max TegmarkDept. of Physics, MIT

tegmark@mit.eduCosmologia en la Playa

January 11-15, 2010

LSS

Max TegmarkDept. of Physics, MIT

tegmark@mit.eduCosmologia en la Playa

January 11-15, 2010

LSS

Max TegmarkDept. of Physics, MIT

tegmark@mit.eduCosmologia en la Playa

January 11-15, 2010

LSS

Max TegmarkDept. of Physics, MIT

tegmark@mit.eduCosmologia en la Playa

January 11-15, 2010

LSS

Max TegmarkDept. of Physics, MIT

tegmark@mit.eduCosmologia en la Playa

January 11-15, 2010

LSS

Max TegmarkDept. of Physics, MIT

tegmark@mit.eduCosmologia en la Playa

January 11-15, 2010

LSS

Max TegmarkDept. of Physics, MIT

tegmark@mit.eduCosmologia en la Playa

January 11-15, 2010

LSS

Max TegmarkDept. of Physics, MIT

tegmark@mit.eduCosmologia en la Playa

January 11-15, 2010

LSS

Lum funcs & sel funcs by Michael Blanton (NYU)

Max TegmarkDept. of Physics, MIT

tegmark@mit.eduCosmologia en la Playa

January 11-15, 2010

Cmbgg OmOl

LSS

Max TegmarkDept. of Physics, MIT

tegmark@mit.eduCosmologia en la Playa

January 11-15, 2010

Cmbgg OmOl

LSS

Max TegmarkDept. of Physics, MIT

tegmark@mit.eduCosmologia en la Playa

January 11-15, 2010

Cmbgg OmOl

LSS

LSS

Molly Swanson, MT, Mike Blanton, Idit Zehavi: arXiv:0702584

Molly Swanson, MT, Mike Blanton, Idit Zehavi: arXiv:0702584

Max TegmarkDept. of Physics, MIT

tegmark@mit.eduCosmologia en la Playa

January 11-15, 2010

LSS

Max TegmarkDept. of Physics, MIT

tegmark@mit.eduCosmologia en la Playa

January 11-15, 2010

LSS

Max TegmarkDept. of Physics, MIT

tegmark@mit.eduCosmologia en la Playa

January 11-15, 2010

LSS

Max TegmarkDept. of Physics, MIT

tegmark@mit.eduCosmologia en la Playa

January 11-15, 2010

LSS

Measuring large-scale structure with galaxy surveys:what are the challenges?

• Statistical errors - Sample variance: want big V - Shot noise: want large n• Systematic errors - Dust extinction (angular selection function) - Radial selection function errors• Data analysis - Survey geometry (window functions) - Numerical challenges • Linking light to mass: - bias - redshift distortions - nonlinearities

P ~ N-1/2(P+n-1)N ~ V k^3

So aim for as large V as possible with nP~1