large scale cosmic ray anisotropy and possible...

Post on 06-Feb-2018

217 views 1 download

Transcript of large scale cosmic ray anisotropy and possible...

Paolo DesiatiRasha Abbasi and Juan Carlos Díaz-Vélez

May 1st, 2009University of Wisconsin - Madison

large scale cosmic ray anisotropyand possible interpretations

1

cosmic ray isotropy

• cosmic rays below the knee are originated in the Galaxy

• cosmic rays below 1018 eV are predominantly galactic

• cosmic rays are expected to be isotropic

2

5⋅10-5 pc10 AU

5⋅10-4 pc100 AU

5⋅10-2 pc104 AU

5 pc106 AU

500 pc108 AU

2⋅104 pc4⋅109 AU

0.05 TeV 0.5TeV 50 TeV 5 PeV 500 PeV 20 EeV

in 1 μG

Size of the Galaxy

cosmic ray anisotropy• Compton-Getting effect : relative motion of observer wrt CR plasma

• local structure of interstellar magnetic field

• helio-magnetic sphere and helio-magnetic tail

• nearby young sources of high energy cosmic rays

3

Heliospheric termination shock

Heliospheric magnetic tail

Boundary to Local Interstellar Cloud

Nearby sources of CR ?

5⋅10-5 pc10 AU

5⋅10-4 pc100 AU

5⋅10-2 pc104 AU

5 pc106 AU

500 pc108 AU

2⋅104 pc4⋅109 AU

0.05 TeV 0.5TeV 50 TeV 5 PeV 500 PeV 20 EeV

in 1 μG

anisotropy discovered

• anisotropy of arrival direction of cosmic rays observed since 80’s

• 10’s GeV-100’s TeV in μ detector, surface arrays and ν detectors

• observed anisotropy of about 10-3

‣ originally measured as solar diurnal variation ofmuon count rate with a seasonal modulation

‣ atmospheric daily/seasonal temperature variation‣ Compton-Getting effect due to Earth’s motion

around the Sun

4

compton-getting effect• apparent anisotropy due to relative motion of observer wrt

cosmic ray plasma

• motion of solar system around GC: v ~ 220 • 103 m/s

➡ maximum effect ~ 3.5 • 10-3

➡ sidereal diurnal variation of arrival directions with (~10%) yearly modulation

Compton and Getting, Phys. Rev. Vol. 47 (11) pp. 817 (1935)

!I

< I >= (2 + !)

v

ccos"

5

compton-getting effect• apparent anisotropy due to relative motion of observer wrt

cosmic ray plasma

• motion of Earth around the Sun: v ~ 29.78 • 103 m/s

➡ maximum effect ~ 5 • 10-4

➡ solar diurnal variation of arrival directions (with yearly modulation)

!I

< I >= (2 + !)

v

ccos"

6

temperature effects• the average atmospheric temperature changes during the day :

day-night (solar diurnal) variations

➡ ~ O(1) % ≫ GC effect

➡ null at the South Pole : SP-day = SP-year

• seasonal modulation over the year

➡ ~ O(1) %

➡ ~ 20 % at the South Pole

7

IC22 IC40

measuring the anisotropy• measure sidereal variations @ sparse latitudes

• cosmic rays energy ~ 60-400 GeV (≲ 90 AU, if 1 μG)

• amplitude and phase change with latitude

• North-South asymmetry

Nagashima et al., Journ. Geophys. Res., Vol 103, No. A8, Pag. 17,429 (1998)

8

measuring the anisotropy• measure sidereal variations @ sparse latitudes

• cosmic rays energy ~ 60-400 GeV

• amplitude and phase change with latitude

• North-South asymmetry

➡ tail-in modulated in time : max in Dec and min in Jun➡ from heliomagnetic tail

Nagashima et al., Journ. Geophys. Res., Vol 103, No. A8, Pag. 17,429 (1998)

9

measuring the anisotropyNagashima et al., Journ. Geophys. Res., Vol 103, No. A8, Pag. 17,429 (1998)

proper motion of solar system

relative motion to ISM

10

measuring anisotropy

• measure sidereal variations @ different latitudes (THN - two hemisphere network)

• cosmic rays energy ~ 140-1700 GeV (≲ 380 AU, if 1 μG)

• amplitude and phase change with latitude

• North-South asymmetry

Hall et al., Journ. Geophys. Res., Vol 103, No. A1, Pag. 367 (1998)

Tail-In max. shifts earlier in the south!

11

measuring the anisotropy

12

what’s the deal with the heliosphere ?

heliosphere• solar system moves wrt ISM at 26 km/sec

• solar wind (400-800 km/sec) diverts interstellar plasma

• when solar wind pressure ~ interstellar pressure the termination shock forms ~ 100 AU = 0.0005 pc (gyroradius @ 0.5 TeV)

• the heliopause separates solar from interstellar material and magnetic field ~ 150-200 AU ~0.001 pc (gyroradius @ 1 TeV)

• interstellar wind forms the heliotail that could extend to 20,000-40,000 AU ~ 0.1-0.2 pc (gyroradius @ 100-200 TeV)

Izmodenov et al., arXiv:astro-ph/0308211

13

heliosphere

Lallement R. et al., Science Vol 307, page 144714

• solar system moves wrt ISM at 26 km/sec

• solar wind (400-800 km/sec) diverts interstellar plasma

• when solar wind pressure ~ interstellar pressure the termination shock forms ~ 100 AU = 0.0005 pc (gyroradius @ 0.5 TeV)

• the heliopause separates solar from interstellar material and magnetic field ~ 150-200 AU ~0.001 pc (gyroradius @ 1 TeV)

• interstellar wind forms the heliotail that could extend to 20,000-40,000 AU ~ 0.1-0.2 pc (gyroradius @ 100-200 TeV)

• cosmic compass

recent measurementsSuper-K

• data from 1996-2001• 1662 days• 2.1•108 events with res < 2º• median energy ~ 10 TeV (~2,200 AU)

Guillian et al., arXiv:astro-ph/0508468

15

recent measurementsSuper-K

16

recentmeasurementsTibet ASγ

• data from 1997-2005• 1874.8 days in total• 3.7•1010 events with res ~ 0.9º• modal energy ~ 3 TeV

Amenomori et al., Science Vol 314, Pag. 439 (2006)

Amenomori et al., arXiv:astro-ph/0505114

4 TeV0.004 pc880 AU

6.2 TeV0.007 pc1,400 AU

12 TeV0.01 pc

2,600 AU

50 TeV0.06 pc

11,000 AU

300 TeV0.3 pc

66,000 AU

17

interstellar magnetic fieldLallement R. et al., Science Vol 307, page 1447 (2005)

26 km/sec

29 km/secVela

Geminga

Local Interstellar Cloudpartly ionized~6000 ºK ~ 0.5 eV

helio tail

18

Priscilla Frisch, University of Chicago

interstellar magnetic fieldLallement R. et al., Science Vol 307, page 1447 (2005)

26 km/sec

29 km/secVela

Geminga

Local Interstellar Cloudpartly ionized~6000 ºK ~ 0.5 eV

helio tail

18

19

+

+

=

+90o

-90o

0h 24h

Amenomori et al., ICRC 2007, Mérida, México (2007)

interstellar magnetic field

Amenomori et al., ICRC 2007, Mérida, México (2007)

5 TeV0.006 pc1,000 AU

20

residual skymap

interstellar magnetic field≲1 TeV≲0.01 pc≲200 AU

recent measurementsMILAGRO

• data from 2000-2007• 9.6•1010 events with res < 1º• median energy ~ 6 TeV (~ 1,300 AU)

Kolterman et al., ICRC 2007, Mérida, México (2007)Abdo et al., arXiv:0806.2293

21

recent measurementsMILAGRO

• data from 2000-2007• 2.2•1011 events with res < 1º• median energy ~ 1 TeV (~ 200 AU)• resolve ≲10º structures

• fractional excess highest in winter lowest in summer

Abdo et al., arXiv:0801.3827

22

recent measurementsMILAGRO Abdo et al., Phys.Rev.Lett.101:221101,2008, arXiv:0801.3827

Amenomori et al., ICRC 2007, Mérida, México (2007)

23

5 TeV

1 TeV

direction of Geminga

• Salvati & Sacco (arXiv:0802.2181)

• heliospheric acceleration scenario excluded• Geminga SN (~340,000 yr old, ~170 pc, 0633+1746)• burst of CR injected with ~ 1049 erg (1% of SN output)• Geminga radial velocity ~ 160 km/sec

• Drury & Aharonian (Astrop.Phys.29:420-423,2008, arXiv:0802.4403)

• magnetic highway between Geminga and us !

nearby source of cosmic rays ?

10o

nearby sources of CR ?Chang et al., Nature, Vol. 456 Pag. 362 (2008)

* AMS△ HEAT

○ BETS╳ PPB-BETS◊ emulsion chambers

ATICelectron energy spectrum

24

Adriani et al., arXiv:0810.4995

Profumo, arXiv:0812.4457

Vela SNR (0835-4510)

25

• formed 10,000-13,000 years ago• ~250 pc away (~230 PeV)• associated to Vela Pulsar (PSR J0835-4510)

• embedded in the Gum Nebula• very bright in x-rays

• cosmic rays from SN exposion• either a faint dipole anisotropy• or totally isotropized

• eventually anisotropy embedded in the observed one

IceCube-22

26Rasha’s analysis

direction of Veladirection of LIMF

conclusions• large scale anisotropy could reveal the structure and intensity of the local IS

magnetic field

• ~1-10 TeV cosmic rays likely to be disturbed by the closer heliospheric structure : helio-tail as cosmic compass

• do HE cosmic ray co-rotate with the Galaxy ? Compton-Getting effect

• nearby sources of cosmic rays influence the anisotropy ?

• search for middle & smaller scale structure : how smaller ?

• correlation between anisotropy and spectral features ?

• how would a young nearby SNR show up ?

• measure anisotropy @ different energies and times of the year

27

spare slides

diurnal variations

29

diurnal variations• at any given time only a fraction of the sky is visible

• it takes 1 solar year to scan the entire visible sky @ given location (with different exposure)

• non uniform sky coverage• diurnal variations from anisotropy

• @ South Pole entire half sky uniformly visible @ any time

• diurnal variation from contingent effects only

30

diurnal variations• @ South Pole entire half sky uniformly visible @ any time

• diurnal variation from contingent effects only

• uniform sky coverage

• no diurnal weather effect

• seasonal weather variation slow ≫ 1 day

• anisotropy visible in right ascension

31

diurnal variationssolar diurnal variation can be represented as(*)

R(t) = 1 + [ A + 2B*cos2π ( t - ƒ2 ) ] * cos2π ( Nt - ƒ1 ) + C*cos2π [ (N+1)t - ƒ3 ]

R(t) = 1 + A*cos2π ( Nt - ƒ1 )

+ B*cos2π [ (N+1)t - (ƒ1 + ƒ2) ] + C*cos2π [ (N+1)t - ƒ3 ]

+ B*cos2π [ (N-1)t - (ƒ1-ƒ2) ]

(*) assume Compton-Getting effect is negligible or included in the solar/sidereal daily variation

solar daily variationseasonal yearly modulation sidereal daily variationatmospheric local effects extra-terrestrial effects

t = time in solar year (i.e. t=1 is one solar year)N = 365.24 cycles / year = solar diurnal frequency

solar diurnal variation

sidereal diurnal variation

spurious sidereal variation true sidereal variation

pseudo-sidereal diurnal variation

Farley and Storey, Proc. Phys. Soc. A67, 996(1954)

Amenomori et al., ICRC 2007, Mérida, México (2007)

toward an interpretation

5 TeV

33

Amenomori et al., ICRC 2007, Mérida, México (2007)

toward an interpretation

5 TeV

33

Amenomori et al., ICRC 2007, Mérida, México (2007)

toward an interpretation

33

gyroradius3 µG

10 µG

2•105 AU

2•104 AU

2•103 AU

2•102 AU

20 AU

2 AU

34