Konstantin A. Lukin€¦ · Konstantin A. Lukin IEEE Fellow . Laboratory for Nonlinear Dynamics of...

Post on 04-Jan-2020

19 views 0 download

Transcript of Konstantin A. Lukin€¦ · Konstantin A. Lukin IEEE Fellow . Laboratory for Nonlinear Dynamics of...

Konstantin A. Lukin IEEE Fellow Laboratory for Nonlinear Dynamics of Electronic Systems LNDES National Academy of Sciences of Ukraine , Kharkov 61085, Ukraine Tel: +38-057-7203349Email: Lukin@ire.kharkov.ua

Institute for Radiophysics and Electronics NAS of Ukraine

Laboratory for Nonlinear Dynamics of Electronic Systems

LNDES

PhD. Выплавин П.Л. ,Земляный О.В., Кудряшов В.В.

Researchers

С.Лукин, Ю.Шиян, Д. Татьянко

Engineers Паламарчук В.П.

Н.К.Заец, П.Сущенко. В.Щербаков

Antenna Laboratory Скресанов В.Н., М.Натаров

.

R.Narayanan & K.Lukin Noise Radar History and Future.. PENSTATE &

Outline Introduction Why use noise waveforms ? Noise Radar over the past 50 years Noise Radar Technology Developments in LNDES Conclusions

3 4/7/2014 NRT-2012 Yalta Crimea UKRAINE

PENSTATE &

R.Narayanan & K.Lukin Noise Radar History and Future..

Definition

Noise Radar Technology (NRT) is a radar technology that uses the noise/random/chaotic continuous or pulsed waveform as a radar signal and coherent processing of radar returns for their optimal reception (matched filtration), i.e. correlation reception or spectral interferometery method.

4 LNDES IRE NASU Konstantin LUKIN

Introduction

PENSTATE &

R.Narayanan & K.Lukin Noise Radar History and Future..

ОПРЕДЕЛЕНИЕ

Шумовая радарная технология (ШРТ) - это радарная технология, которая использует непрерывные и импульсные шумовые/хаотические/случайные сигналы в качестве зондирующих и когерентную обработку принятых отражений для их оптимального приема, согласованной фильтрации

5 NRT-2012 Yalta Crimea UKRAINE 4/7/2014

R.Narayanan & K.Lukin Noise Radar History and Future.. PENSTATE &

6

Military operations require low probability of intercept (LPI), low probability of exploitation (LPE), low probability of detection (LPD) of operating noise radar, and best anti-jam characteristics, EMC, etc.

NRT-2012 Yalta Crimea UKRAINE 4/7/2014

R.Narayanan & K.Lukin Noise Radar History and Future.. PENSTATE &

7

Military operations require low probability of intercept (LPI), low probability of exploitation (LPE), low probability of detection (LPD) of operating noise radar, and best anti-jam characteristics, EMC, etc.

Traditional radar and communications systems use conventional deterministic waveforms

NRT-2012 Yalta Crimea UKRAINE 4/7/2014

R.Narayanan & K.Lukin Noise Radar History and Future.. PENSTATE &

8

Military operations require low probability of intercept (LPI), low probability of exploitation (LPE), low probability of detection (LPD) of operating noise radar, and best anti-jam characteristics, EMC, etc.

Traditional radar and communications systems use conventional deterministic waveforms

Deterministic waveforms (such as impulse/short-pulse and linear/stepped frequency modulated) do NOT possess above desirable features

NRT-2012 Yalta Crimea UKRAINE 4/7/2014

R.Narayanan & K.Lukin Noise Radar History and Future.. PENSTATE &

9

Military operations require low probability of intercept (LPI), low probability of exploitation (LPE), low probability of detection (LPD) of operating noise radar, and best anti-jam characteristics, EMC, etc.

Traditional radar and communications systems use conventional deterministic waveforms

Deterministic waveforms (such as impulse/short-pulse and linear/stepped frequency modulated) do NOT possess above desirable features

One has to apply Noise /Random Waveform

NRT-2012 Yalta Crimea UKRAINE 4/7/2014

ADVANTAGES OF NOISE RADAR TECHNOLOGY Noise/Random/Chaotic waveforms enables: A. Optimal coherent reception of noise radar returns B. High rate compression C. Independent control of velocity and range resolutions when measuring jointly range and Doppler frequency D. No side lobes in Ambiguity Function E. No range ambiguity for CW and pulse waveforms

10 NRT-2012 Yalta Crimea UKRAINE 4/7/2014

ADVANTAGES OF NOISE RADAR TECHNOLOGY Noise/Random/Chaotic waveforms enables: A. Optimal coherent reception of noise radar returns B. High rate compression C. Independent control of velocity and range resolutions when measuring jointly range and Doppler frequency D. No side lobes in Ambiguity Function (just residual fuctuations) E. No range ambiguity for CW and pulse waveforms

11

NOISE RADAR TECHNOLOGY has an attractive potentiality for design of radar systems having the best performance for civil and military applications: A. Low Probability of Interception (LPI) and LPE exploiting of noise radar returns B. High resistance against EM interference C. Electromagnetic Compatibility: possibility to use simultaneously many radars within the same area

NRT-2012 Yalta Crimea UKRAINE 4/7/2014

Waveform comparison

0 500 1000 1500-0.5

0

0.5

1Impulse waveform

Ampli

tude

0 500 1000 1500-1

-0.5

0

0.5

1LFM waveform

Ampli

tude

0 500 1000 1500

-2

0

2

Random noise waveform

Time

Ampli

tude

12 NRT-2012 Yalta Crimea UKRAINE 4/7/2014

0 01( , , ) ( ) ( )

2T

TR T X t X t dt

Tτ τ τ τ

−= − −∫

Block diagram of CW Noise Radar with correlation processing

PENSTATE &

R.Narayanan & K.Lukin Noise Radar History and Future..

7

PENSTATE &

R.Narayanan & K.Lukin Noise Radar History and Future..

6

PENSTATE &

R.Narayanan & K.Lukin Noise Radar History and Future..

5

PENSTATE &

R.Narayanan & K.Lukin Noise Radar History and Future..

4

PENSTATE &

R.Narayanan & K.Lukin Noise Radar History and Future..

3

PENSTATE &

R.Narayanan & K.Lukin Noise Radar History and Future..

2

PENSTATE &

R.Narayanan & K.Lukin Noise Radar History and Future..

1

PENSTATE &

R.Narayanan & K.Lukin Noise Radar History and Future..

0

PENSTATE &

R.Narayanan & K.Lukin Noise Radar History and Future..

Range

Ambiguity Function of a Single Pulse of Noise/ Random Waveform with Gaussian Frequency Spectrum Shape

( ) 2, ,Tχ τΩ

Doppler Frequency

R.Narayanan & K.Lukin Noise Radar History and Future.. PENSTATE &

Richard Bourret & Billy Horton’s seminal papers

R. Bourett, “A proposed technique for the improvement of range

determination with noise radar” Proceedings of the IRE, December 1957. B. M. Horton, “Noise-modulated distance measuring systems” Proceedings of the IRE, vol. 47, no. 5, pp. 821-828, May 1959.

23 NRT-2012 Yalta Crimea UKRAINE 4/7/2014

R.Narayanan & K.Lukin Noise Radar History and Future.. PENSTATE &

Double Spectral Processing in Noise Radar

24 4/7/2014 NRT-2012 Yalta Crimea UKRAINE

R.Narayanan & K.Lukin Noise Radar History and Future.. PENSTATE &

Double Spectral Processing in Noise Radar

25 4/7/2014 NRT-2012 Yalta Crimea UKRAINE

R.Narayanan & K.Lukin Noise Radar History and Future.. PENSTATE &

Noise Radar Development Eras 1960S AND 1970S: Initial studies and performance analyses by a

handful of researchers

26 4/7/2014 NRT-2012 Yalta Crimea UKRAINE

R.Narayanan & K.Lukin Noise Radar History and Future.. PENSTATE &

Noise Radar Development Eras 1960S AND 1970S: Initial studies and performance analyses by a

handful of researchers 1980S: Relatively little development took place,

27 4/7/2014 NRT-2012 Yalta Crimea UKRAINE

R.Narayanan & K.Lukin Noise Radar History and Future.. PENSTATE &

Noise Radar Development Eras 1960S AND 1970S: Initial studies and performance analyses by a

handful of researchers 1980S: Relatively little development took place, 1990s AND 2000S: Advanced system development and

demonstration by several groups all over the world

28 4/7/2014 NRT-2012 Yalta Crimea UKRAINE

R.Narayanan & K.Lukin Noise Radar History and Future.. PENSTATE &

Noise Radar Development Eras 1960S AND 1970S: Initial studies and performance analyses by a

handful of researchers 1980S: Relatively little development took place, but two

crucial experiments have been done in LNDES IRE NAS of Ukraine!

1990s AND 2000S: Advanced system development and

demonstration by several groups all over the world

29 4/7/2014 NRT-2012 Yalta Crimea UKRAINE

R.Narayanan & K.Lukin Noise Radar History and Future.. PENSTATE &

The 1980s Not much work published during this decade,

but it has been shown in LNDES, IRE NAS of Ukraine:

1. Dynamical Chaos may be used for design of random noise sources: Ka-band transmitter with 700MHz bandwidth noise signals based on BWO

2. Autodyne phenomenon in wideband Chaos generator has been revealed to be used for both Range and Doppler measurement

30 4/7/2014 NRT-2012 Yalta Crimea UKRAINE

R.Narayanan & K.Lukin Noise Radar History and Future.. PENSTATE &

Autodyne Effect in MMW Chaos Generator

31

K.Lukin & V.Rakitaynsky IRE NAS of UKRAINE 1986 and 1987

4/7/2014 NRT-2012 Yalta Crimea UKRAINE

R.Narayanan & K.Lukin Noise Radar History and Future.. PENSTATE &

Early 1990s Konstantin Lukin , et al. Digital-Analog Correlator for

random signals (MSMW-Symposium,1992) . NR Research at Ohio State University was pioneered by Prof. Eric Walton: Implemented short range solid state noise radar for target detection,

recognition, and ISAR imaging Demonstrated ultrawideband (UWB) noise radar with very good resolution Two representative papers listed below: E.K. Walton, V. Fillimon, and S. Gunawan, “ISAR imaging using UWB noise radar,” Proc. 18th Annual AMTA

Symposium, Seattle, WA, pp. 167-171, September-October 1996. I.P. Theron, E.K. Walton, S. Gunawan, and L. Cai, “Ultrawide-band noise radar in the VHF/UHF band,” IEEE Transactions on Antennas and Propagation, vol. 47,

pp. 1080-1084, June 1999.

32 4/7/2014 NRT-2012 Yalta Crimea UKRAINE

R.Narayanan & K.Lukin Noise Radar History and Future.. PENSTATE &

33

Ka-band CW Noise Radar Chaos Generator on the basis of IMPATT diode Relay Type Digital-Analog Correlator

1993

4/7/2014 NRT-2012 Yalta Crimea UKRAINE

R.Narayanan & K.Lukin Noise Radar History and Future.. PENSTATE &

34 4/7/2014 NRT-2012 Yalta Crimea UKRAINE

USA Canada Brazil Mexico

UKRAINE Poland Sweden France Russia UK Italy Germany Portugal Finland

Noise Radar Countries

CHINA South Korea Australia

R.Narayanan & K.Lukin Noise Radar History and Future.. PENSTATE &

Active research groups on both sides of the Atlantic (and beyond!)

Prof. Ram Narayanan (USA) Prof. Konstantin Lukin (Ukraine) Prof. Krzysztof Kulpa (Poland) Dr. T. Thayaparan (Canada) Dr. Andy Stove (UK) Prof. Douglas Gray (Australia) Dr. Mark Govoni (USA) Prof. Jeong Phill Kim (South Korea) Prof. Heinrich Loele (Germany) Dr. Sune Axelsson (Sweden) Dr. Joao Moreira (Brazil)

35 4/7/2014 NRT-2012 Yalta Crimea UKRAINE

R.Narayanan & K.Lukin Noise Radar History and Future.. PENSTATE &

Intensive research on noise radar technology and implementation

R. Narayanan – Correlation in Time Domain UWB Noise Radar MIMO Noise Radar

K. Lukin – Correlation in Time Domain and

Frequency Domain + Double spectral method or Spectral Interferometry Software Defined Noise Radar Stepped Frequency and Stepped Delay Noise Radar Pulse Coherent Noise Radar

36 4/7/2014 NRT-2012 Yalta Crimea UKRAINE

PENSTATE &

R.Narayanan & K.Lukin Noise Radar History and Future..

Noise Radar Technology in

UKRAINE

Konstantin A. Lukin LNDES IRE NASU

Institute of Radiophysics and Electronics National Academy of Sciences of Ukraine

12 Akad. Proskura Str., Kharkov, 61085, Ukraine Tel.+38-057-7203349, Fax +38-057-3152105

E-mail: lukin.konstantin@gmail.com ; lukin@ire.kharkov.ua

37 4/7/2014 NRT-2012 Yalta Crimea UKRAINE

PENSTATE &

R.Narayanan & K.Lukin Noise Radar History and Future.. Noise Radar Technology (NRT)

uses noise waveforms (NW) as a sounding signal and coherent processing for radar return reception

Noise waveform generation: 1.Noise Oscillators (vacuum tubes and IMPATT) 2. Frequency/Phase modulation of VCOs 3. Digital sources – AWG and FPGA (ПЛИС)

For the radar return reception, the following techniques may be used, for instance: (1) Correlation Reception of NW radar returns, implying the use of a delay line or (2) Spectral Interferometry, enabling range and velocity measurements without the need for a delay line.

Fast ADC and FPGA may be used for both types of processing

Employment of NW in combination with coherent processing of radar returns

gives an excellent basis for significant enhancement in technical performance of radar systems.

38 4/7/2014 NRT-2012 Yalta Crimea UKRAINE

R.Narayanan & K.Lukin Noise Radar History and Future.. PENSTATE &

39 4/7/2014 NRT-2012 Yalta Crimea UKRAINE

R.Narayanan & K.Lukin Noise Radar History and Future.. PENSTATE &

40

4/7/2014 NRT-2012 Yalta Crimea UKRAINE

PENSTATE &

R.Narayanan & K.Lukin Noise Radar History and Future..

41

First X-band Ground Based SAR

4/7/2014 NRT-2012 Yalta Crimea UKRAINE

R.Narayanan & K.Lukin Noise Radar History and Future.. PENSTATE &

First X-band Ground Based SAR

42 4/7/2014 NRT-2012 Yalta Crimea UKRAINE

PENSTATE &

R.Narayanan & K.Lukin Noise Radar History and Future..

43 4/7/2014 NRT-2012 Yalta Crimea UKRAINE

PENSTATE &

R.Narayanan & K.Lukin Noise Radar History and Future..

44 4/7/2014 NRT-2012 Yalta Crimea UKRAINE

PENSTATE &

R.Narayanan & K.Lukin Noise Radar History and Future..

45 4/7/2014 NRT-2012 Yalta Crimea UKRAINE

R.Narayanan & K.Lukin Noise Radar History and Future.. PENSTATE &

Surveillance mode

47 4/7/2014 NRT-2012 Yalta Crimea UKRAINE

R.Narayanan & K.Lukin Noise Radar History and Future.. PENSTATE &

Arc-SAR scanning Radar is mounted at the height of 20 m

48 4/7/2014 NRT-2012 Yalta Crimea UKRAINE

R.Narayanan & K.Lukin Noise Radar History and Future.. PENSTATE &

Arc-SAR Performance Central frequency 9.2 GHz Spectrum bandwidth 250 MHz Peak transmitted power 400 mW Polarization V V Boom length 1.75 m Scanning angle 99 degrees Scanning step 0.9 degree Range resolution 32 cm Cross-range resolution at 45 m 32 cm Precision of Shift detection 1 mm

49 4/7/2014 NRT-2012 Yalta Crimea UKRAINE

R.Narayanan & K.Lukin Noise Radar History and Future.. PENSTATE &

Optical image

Radar

50 4/7/2014 NRT-2012 Yalta Crimea UKRAINE

R.Narayanan & K.Lukin Noise Radar History and Future.. PENSTATE &

Optical and SAR images

Radar

51 4/7/2014 NRT-2012 Yalta Crimea UKRAINE

PENSTATE &

R.Narayanan & K.Lukin Noise Radar History and Future..

Antennae with Beam Synthesis

Helical – Slot Antenna with Beam Synthesis 2-D Horn

Stator

Slot Input-output Waveguide

Slot Short-circuit Groove

Rotor Rectangle Waveguide

Helical-Slot Synthetic Aperture Antenna Testing

Proving Ground SAR Image

Object Locations

Schematic of 1D Tape Sliding –Slot Antenna

SAR Images generated with help of 1D Tape Sliding –Slot Antenna

PENSTATE &

R.Narayanan & K.Lukin Noise Radar History and Future..

57

Антенна с синтезируемой диаграммой направленности

Рупор

Выход

Резонансная щель

Датчик угла повотора

Шаговый двигатель

R.Narayanan & K.Lukin Noise Radar History and Future.. PENSTATE &

Ka-band Ground Based Noise Waveform SAR

and Measurement of Shifts in Bell Tower of

Sophia Cathedral (Kiev)

Ground Based Synthetic Aperture Radar Sensors for Detection of Small Shifts

Ground based noise SAR

Realization of Noise Radar signal

Energy Spectrum of Transmit Signal

Ka-band Ground Based NW SAR signal

R.Narayanan & K.Lukin Noise Radar History and Future.. PENSTATE &

Measurements

Ka-band Ground Based Noise Waveform SAR operated in “monostatic” mode using single frequency channel.

It was deployed on the ground at the distance of 22 meters from the Bell Tower.

Measurements have been carried out during 24 hours.

R.Narayanan & K.Lukin Noise Radar History and Future.. PENSTATE &

Monitoring of Bell Tower of Sophia Cathedral in Kiev, UKRAINE

R.Narayanan & K.Lukin Noise Radar History and Future.. PENSTATE &

GB NW-SAR images of Sophia Bell Tower

Images obtained with 1 hour interval

R.Narayanan & K.Lukin Noise Radar History and Future.. PENSTATE &

Differential Interferogramms of Sophia Bell Tower

1 hour delay, sunrise 1 hour delay, night

R.Narayanan & K.Lukin Noise Radar History and Future.. PENSTATE &

D-InSAR precision

0.707

3 deg

3 degrees width of the histogram gives ~ 0.03 mm precision at the 8mm wavelength

LNDES IRE NASU (Ukraine) and

NATO/RTO-SET-101/RTG057 on Noise Radar Technology

Andy Stove (UK) and Konstantin Lukin (UA) before field trials , June 2008, Kharkov

Field Trials Campaign.

Kharkov, UKRAINE Summer 2008

Ka-band Ground Based Noise Waveform SAR

Krzysztof Kulpa (PL),Andy Stove (UK), and David Calugi (IT) in the test field

June 2008, Kharkov 67 4/7/2014 NRT-2012 Yalta Crimea UKRAINE

GB NW-SAR specifications

1. Frequency range 36 37 GHz 2. Synthetic aperture 0.7 m 3. Coverage sector in azimuth 80 deg 4. Coverage sector in elevation 20 deg 5. Range resolution 0.3 m 6. Azimuth resolution at 50m distance 0.5 m 7. Potential accuracy of displacement measurement 0.1 mm 8. Single Scan time ~20 s 9. Working range 3 80 m

68 4/7/2014 NRT-2012 Yalta Crimea UKRAINE

69 4/7/2014 NRT-2012 Yalta Crimea UKRAINE

SAR image of the lake. Generated by A. Stove

(UK) using the data obtained during the trial campaign of Ka-band

Noise Waveform SAR developed by K.Lukin’s team from LNDES IRE

NASU, Kharkov, UKRAINE

70 4/7/2014 NRT-2012 Yalta Crimea UKRAINE

R.Narayanan & K.Lukin Noise Radar History and Future.. PENSTATE &

Proposed netted MIMO noise radar system

71 4/7/2014 NRT-2012 Yalta Crimea UKRAINE

Possible field implementation

72 4/7/2014 NRT-2012 Yalta Crimea UKRAINE

PENSTATE &

R.Narayanan & K.Lukin Noise Radar History and Future..

Intrusion detection Noise Radar Tunable Doppler Noise Radar for range estimation Stepped-Frequency and Stepped delay Noise Radar Pulse coherent Noise Radar Radiometric Coherent Imaging

Noise Radar Distinguishing Features

R.Narayanan & K.Lukin Noise Radar History and Future.. PENSTATE &

Interference Immunity of Pulse Radar using Noise Waveform and Chirp

Monochromatic Interference Narrowband Interference RF Interference Gaussian Noise Interference SAR Interference Immunity

Received signal after compression without interference

chirp noise waveform

Averaged compressed signal (monochromatic interference)

1 50 200 Number of averages

NW

chirp

PENSTATE &

R.Narayanan & K.Lukin Noise Radar History and Future..

SAR Interference Immunity (coherent monochromatic Interference)

NW

chirp

no SIR=-10dB SIR=-20dB interference

Noise Signal Properties

Power spectrum Coherence (autocorrelation) functions

(1) not modulated SF signal;

(2) RFM signal with 27 MHz bandwidth;

(3) RFM signal with 54 MHz bandwidth

(1) not modulated SF signal;

(2) 1.8 MHz;

(3) 27 MHz;

(4) 54 MHz;

(5) 100 MHz

/cl c f= ∆Coherence length

Isolating properties of noise signal in stepped frequency radar

PENSTATE &

R.Narayanan & K.Lukin Noise Radar History and Future..

NoiseGenerator

PowerSupply Mixer

DSP

F.C.

LeakageReference

Homodyne Noise Radar

Obstacle Approaching Sensor

INTRUISION DETECTION SENSOR

- DOPPLER SIGNAL IS GENERATED WHEN A MOVING OBJECT IS WITHIN THE SENSORWORKING RANGE ONLY (CORRELATION VOLUME) - THE WORKING RANGE IS DEFINED BY THE COHERENCE LENGTH OF THE WAVEFORM, BUT NOT TRANSMITTED POWER

NOISE AUTODYNE SENSOR

I NGLPF

DOPPLER SIGNAL

APPLICATION

Системи автоматичного контролю у місцяхпаркування автомобілів

POWER SPECTRUM

PERFORMANCE 1.1 TRANSMITTED POWER 36 mW 1.2 CENTRAL FREQUENCY 36.5 GHz 1.3 BANDWIDTH 2 GHz 1.4 COHERENCE LENGTH ≈0.3 m 1.5 WORKING CURRENT 100 mA 1.6 WORKING VOLTAAGE 30 V 1.7 ORKING RANGE 1.5м

COHERENCE LENGTH

L = c/ ΔF

ΔF SPECTRUM BANDWID с – VELOCITY OF LIGHT

Wideband Noise Doppler Sensor

p-i-n

p-i-n

Bend spectrum control

Swich

Signal out put

Detector 1

NoiseGenerator

Directional Coupler

Controlling

Detector 2 Isolator

Controlling

Power Supply

Controlling

Modulator 1

Modulator 2

Isolator Attenuator

Attenuator

Antenna

Antenna

Frequency control

Directional Coupler

2c fc

c cf Tl L

∆ = >> =

+==

00

0 122

22LVtL

cf

Lcf ππϕ

-60

-40

-20

0

20

40

60

80

2 19 43,57 78 95,21 ∆F,MHz

A,dBАс.,dBАш.,dB

-40

-20

0

20

40

60

80

100

2 19 43,57 78 95,21 ∆F,МГц

A,dB

Ас.,dBАш.,dB

б)

г)

-30

-20

-10

0

10

20

30

40

50

60

2 19 43,57 78 95,21 ∆F,МГц

A,dB

Ас.,dBАш.,dB

Range Estimation using K-band Autodyne Noise Doppler Radar

PENSTATE &

R.Narayanan & K.Lukin Noise Radar History and Future..

Stepped frequency Noise Radar Switching of central frequency of narrowband random waveforms

Time realizations:

Stepped frequency Noise stepped frequency

Stepped frequency Noise stepped frequency

Frequency spectra of signals:

PENSTATE &

R.Narayanan & K.Lukin Noise Radar History and Future..

Signal processing stages in stepped frequency radar

0 10 20 30 40 50 60 70 80 90 1000

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

04sin nn

R fSc

π = n n nS S w= ( )m nR FFT S=

Quadratic detector signal with harmonic modulation due to presence of target

Weighting in order to decrease sidelobes of the range profile

Range profile generated by application of FFT to the weighted data

PENSTATE &

R.Narayanan & K.Lukin Noise Radar History and Future..

AWG472 – 4 GSPS 12-bit Dual-Channel Arbitrary Waveform Generator

• два 12-разрядных ЦАП с линейностью 10 разрядов • IQ-фазовая синхронизация выходных сигналов • максимальная тактовая частота 4 ГГц • память с объемом 2 x 4M x 12 бит с многостраничной

организацией • максимальная длительность выборки 1 мс при тактовой

частоте 4 ГГц • режимы непрерывной генерации, непрерывной генерации

с запуском, однократного запуска • динамическая генерация страниц • возможность запуска от внешнего сигнала или программно

PENSTATE &

R.Narayanan & K.Lukin Noise Radar History and Future..

Генерация шумовых сигналов с использованием AWG472

Time series, power spectrum and autocorrelation function of noise waveform in 0MHz-200MHz frequency band

Time series, power spectrum and autocorrelation functionof noise waveform in 400MHz-800MHz frequency band

PENSTATE &

R.Narayanan & K.Lukin Noise Radar History and Future..

PENSTATE &

R.Narayanan & K.Lukin Noise Radar History and Future..

PENSTATE &

R.Narayanan & K.Lukin Noise Radar History and Future..

PENSTATE &

R.Narayanan & K.Lukin Noise Radar History and Future..

PENSTATE &

R.Narayanan & K.Lukin Noise Radar History and Future..

PENSTATE &

R.Narayanan & K.Lukin Noise Radar History and Future..

SAR Image of the LNDES room generated with Noise Stepped-Frequency Radar with Regular Steps

Two spherical targets where placed at the range 2.8 m from the SF Noise SAR

Noise Waveform Bandwidth 10 MHz Noise Waveform Bandwidth 30MHz Sinusoidal signal

Noise 10 MHz Range = 3.5m Noise 30 MHz Range = 3.5m

Noise Waveform Bandwidth 10 MHz

SAR Image of the LNDES room generated with Noise Stepped-Frequency Radar with Regular Steps

Noise Waveform Bandwidth 30MHz

Two spherical targets where placed at the range 3.5 m from the SF Noise SAR

PENSTATE &

R.Narayanan & K.Lukin Noise Radar History and Future.. Программно-задаваемый шумовой радар для непрерывных сигналов

Тестовая конфигурация на базе платы

Результат теста в управляющей программе для ПК

Низкочастотный программно-задаваемый шумовой радар (ПЗШР) на базе платы RVI

Корреляционная функция, полученная с помощью ПЗШР на RVI в программе на ПК

Плата разработки Altera (DK-NIOS-2S60N)

Плата разработки Actel RVI (ICTP M-LAB)

PENSTATE &

R.Narayanan & K.Lukin Noise Radar History and Future..

Experimental validation of the stepped-delay method using AWG

Sounding signal (CH2) - array of digital samples obtained in a PC.

The reference signal (CH1)– digital samples with consequent time-delay steps.

Analog mixer + LPF output – sequence of samples of cross-correlation function

AWG

CH1

CH2 10-180MHz

10-180MHz

С

С

RADC

Cross-correlation between transmitted signal and the reference

PENSTATE &

R.Narayanan & K.Lukin Noise Radar History and Future..

Спирально-щелевая сканирующая антенна с синтезированием диаграммы направленности

Микроволоновая видеокамера

Геометрия АРСА

Неподвижная, непереключаемая антенная решетка для наземной шумовой РСА

R.Narayanan & K.Lukin Noise Radar History and Future.. PENSTATE &

• частота сигнала: 30 ГГц • частота дискретизации: 2 ГГц • апертура антенны: 100 см • количество излучателей: 200 • средняя задержка между элементами

антенны ~90 см • дальность до сцены: 100 м

Один скан Три скана Десять сканов Геометрия сцены

Характеристики АРСА

Неподвижная, непереключаемая антенная решетка для наземной шумовой РСА

1;1

k;q

SAR plane

SAR & wideband noise waveform -> 3D image

3D SAR image.

++

==

Noise waveform

3D SAR image formation

Combination of 2D synthetic aperture and noise signals with high bandwidth enables to obtain high

resolution 3D radar images

Presenter
Presentation Notes
It was advanced black magic class. Now we can form 3D image :D

1

2

R.

Target 1 (Sphere)

Target 2 (corner reflector)

0

Range

2 m

5 m

Room wall

SD

LN

E

MOR

O

1.4

m

~ <

1m

Ele

vatio

n.

Azimuth

SAR sensor

Scene for 3D imaging

LNDES, IRE NASU UKRAINE .& ITCC, Industry-University Collaboration Foundation, CNU, Korea APSAR-2011

R.Narayanan & K.Lukin Noise Radar History and Future.. PENSTATE &

Scene for 3D imaging

Sphere

Corner reflector

LNDES, IRE NASU UKRAINE .& ITCC, Industry-University Collaboration Foundation, CNU, Korea APSAR-2011

3D images. Detection of targets

4 2. . 2

:0.3 ,

4 19.73c r

Corner reflectorl m

l mπσλ

=

= 2 2.

:0.1 ,

0.03 .sph

Spherer m

r mσ π

=

=

( ).for monostatic configuration

Target 1

0

The wall 7.8 m

0

1 m

- Az + Az

R+H

-H

SAR plane

1 m

2 m

3 m

4 m

5 m

6 m

7 mTarget 2

Short range 3D imaging with NW SAR

LNDES, IRE NASU UKRAINE & ITCC, Industry-University Collaboration Foundation, CNU, Korea APSAR-2011

Target 1

0

The wall 7.8 m

0

1 m

- Az + Az

R+H

-H

SAR plane

1m

2m

3m

4m

5m

6m

7mTarget 2

Short range 3D imaging with NW SAR

LNDES, IRE NASU UKRAINE & ITCC, Industry-University Collaboration Foundation, CNU, Korea APSAR-2011

Target 1

0

The wall 7.8 m

0

1 m

- Az + Az

R+H

-H

SAR plane

1m

2m

3m

4m

5m

6m

7m

Short range 3D imaging with NW SAR

LNDES, IRE NASU UKRAINE & ITCC, Industry-University Collaboration Foundation, CNU, Korea APSAR-2011

Target 1

0

The wall 7.8 m

0

1 m

- Az + Az

R+H

-H

SAR plane

1m

2m

3m

4m

5m

6m

7m

Short range 3D imaging with NW SAR

LNDES, IRE NASU UKRAINE & ITCC, Industry-University Collaboration Foundation, CNU, Korea APSAR-2011

Target 1

0

The wall 7.8 m

0

1 m

- Az + Az

R+H

-H

SAR plane

1m

2m

3m

4m

5m

6m

7m

Short range 3D imaging with NW SAR

LNDES, IRE NASU UKRAINE & ITCC, Industry-University Collaboration Foundation, CNU, Korea APSAR-2011

Target 1

0

The wall 7.8 m

0

1 m

- Az + Az

R+H

-H

SAR plane

1m

2m

3m

4m

5m

6m

7m

Short range 3D imaging with NW SAR

LNDES, IRE NASU UKRAINE & ITCC, Industry-University Collaboration Foundation, CNU, Korea APSAR-2011

Target 1

0

The wall 7.8 m

0

1 m

- Az + Az

R+H

-H

SAR plane

1m

2m

3m

4m

5m

6m

7m

Short range 3D imaging with NW SAR

LNDES, IRE NASU UKRAINE & ITCC, Industry-University Collaboration Foundation, CNU, Korea APSAR-2011

Target 1

0

The wall 7.8 m

0

1 m

- Az + Az

R+H

-H

SAR plane

1m

2m

3m

4m

5m

6m

7m

Short range 3D imaging with NW SAR

LNDES, IRE NASU UKRAINE & ITCC, Industry-University Collaboration Foundation, CNU, Korea APSAR-2011

Target 1

0

The wall 7.8 m

0

1 m

- Az + Az

R+H

-H

SAR plane

1m

2m

3m

4m

5m

6m

7m

Short range 3D imaging with NW SAR

LNDES, IRE NASU UKRAINE & ITCC, Industry-University Collaboration Foundation, CNU, Korea APSAR-2011

Target 1

0

The wall 7.8 m

0

1 m

- Az + Az

R+H

-H

SAR plane

1m

2m

3m

4m

5m

6m

7m

Short range 3D imaging with NW SAR

LNDES, IRE NASU UKRAINE & ITCC, Industry-University Collaboration Foundation, CNU, Korea APSAR-2011

Target 1

0

The wall 7.8 m

0

1 m

- Az + Az

R+H

-H

SAR plane

1m

2m

3m

4m

5m

6m

7m

Short range 3D imaging with NW SAR

LNDES, IRE NASU UKRAINE & ITCC, Industry-University Collaboration Foundation, CNU, Korea APSAR-2011

Target 1

0

The wall 7.8 m

0

1 m

- Az + Az

R+H

-H

SAR plane

1m

2m

3m

4m

5m

6m

7m

Short range 3D imaging with NW SAR

LNDES, IRE NASU UKRAINE & ITCC, Industry-University Collaboration Foundation, CNU, Korea APSAR-2011

Target 1

0

The wall 7.8 m

0

1 m

- Az + Az

R+H

-H

SAR plane

1m

2m

3m

4m

5m

6m

7m

Short range 3D imaging with NW SAR

LNDES, IRE NASU UKRAINE & ITCC, Industry-University Collaboration Foundation, CNU, Korea APSAR-2011

Target 1

0

The wall 7.8 m

0

1 m

- Az + Az

R+H

-H

SAR plane

1m

2m

3m

4m

5m

6m

7m

Short range 3D imaging with NW SAR

Target 1

0

The wall 7.8 m

0

1 m

- Az + Az

R+H

-H

SAR plane

1m

2m

3m

4m

5m

6m

7m

Short range 3D imaging with NW SAR

LNDES, IRE NASU UKRAINE & ITCC, Industry-University Collaboration Foundation, CNU, Korea APSAR-2011

Target 1

0

The wall 7.8 m

0

1 m

- Az + Az

R+H

-H

SAR plane

1m

2m

3m

4m

5m

6m

7m

Short range 3D imaging with NW SAR

LNDES, IRE NASU UKRAINE & ITCC, Industry-University Collaboration Foundation, CNU, Korea APSAR-2011

Target 1

0

The wall 7.8 m

0

1 m

- Az + Az

R+H

-H

SAR plane

1m

2m

3m

4m

5m

6m

7m

Short range 3D imaging with NW SAR

LNDES, IRE NASU UKRAINE & ITCC, Industry-University Collaboration Foundation, CNU, Korea APSAR-2011

Target 1

0

The wall 7.8 m

0

1 m

- Az + Az

R+H

-H

SAR plane

1m

2m

3m

4m

5m

6m

7mTarget 2

Short range 3D imaging with NW SAR

LNDES, IRE NASU UKRAINE & ITCC, Industry-University Collaboration Foundation, CNU, Korea APSAR-2011

Target 1

0

The wall 7.8 m

0

1 m

- Az + Az

R+H

-H

SAR plane

1m

2m

3m

4m

5m

6m

7mTarget 2

Short range 3D imaging with NW SAR

LNDES, IRE NASU UKRAINE & ITCC, Industry-University Collaboration Foundation, CNU, Korea APSAR-2011

Target 1

0

The wall 7.8 m

0

1 m

- Az + Az

R+H

-H

SAR plane

1m

2m

3m

4m

5m

6m

7mTarget 2

Short range 3D imaging with NW SAR

LNDES, IRE NASU UKRAINE & ITCC, Industry-University Collaboration Foundation, CNU, Korea APSAR-2011

Target 1

0

The wall 7.8 m

0

1 m

- Az + Az

R+H

-H

SAR plane

1m

2m

3m

4m

5m

6m

7mTarget 2

Short range 3D imaging with NW SAR

LNDES, IRE NASU UKRAINE & ITCC, Industry-University Collaboration Foundation, CNU, Korea APSAR-2011

Target 1

0

The wall 7.8 m

0

1 m

- Az + Az

R+H

-H

SAR plane

1m

2m

3m

4m

5m

6m

7mTarget 2

Short range 3D imaging with NW SAR

LNDES, IRE NASU UKRAINE & ITCC, Industry-University Collaboration Foundation, CNU, Korea APSAR-2011

Target 1

0

The wall 7.8 m

0

1 m

- Az + Az

R+H

-H

SAR plane

1m

2m

3m

4m

5m

6m

7mTarget 2

Short range 3D imaging with NW SAR

LNDES, IRE NASU UKRAINE & ITCC, Industry-University Collaboration Foundation, CNU, Korea APSAR-2011

Target 1

0

The wall 7.8 m

0

1 m

- Az + Az

R+H

-H

SAR plane

1m

2m

3m

4m

5m

6m

7mTarget 2

Short range 3D imaging with NW SAR

LNDES, IRE NASU UKRAINE & ITCC, Industry-University Collaboration Foundation, CNU, Korea APSAR-2011

Target 1

0

The wall 7.8 m

0

1 m

- Az + Az

R+H

-H

SAR plane

1m

2m

3m

4m

5m

6m

7mTarget 2

Short range 3D imaging with NW SAR

LNDES, IRE NASU UKRAINE & ITCC, Industry-University Collaboration Foundation, CNU, Korea APSAR-2011

Target 1

0

The wall 7.8 m

0

1 m

- Az + Az

R+H

-H

SAR plane

1m

2m

3m

4m

5m

6m

7mTarget 2

Short range 3D imaging with NW SAR

LNDES, IRE NASU UKRAINE & ITCC, Industry-University Collaboration Foundation, CNU, Korea APSAR-2011

Target 1

0

The wall 7.8 m

0

1 m

- Az + Az

R+H

-H

SAR plane

1m

2m

3m

4m

5m

6m

7mTarget 2

Short range 3D imaging with NW SAR

LNDES, IRE NASU UKRAINE & ITCC, Industry-University Collaboration Foundation, CNU, Korea APSAR-2011

Target 1

0

The wall 7.8 m

0

1 m

- Az + Az

R+H

-H

SAR plane

1m

2m

3m

4m

5m

6m

7mTarget 2

Short range 3D imaging with NW SAR

LNDES, IRE NASU UKRAINE & ITCC, Industry-University Collaboration Foundation, CNU, Korea APSAR-2011

Target 1

0

The wall 7.8 m

0

1 m

- Az + Az

R+H

-H

SAR plane

1m

2m

3m

4m

5m

6m

7mTarget 2

Short range 3D imaging with NW SAR

LNDES, IRE NASU UKRAINE & ITCC, Industry-University Collaboration Foundation, CNU, Korea APSAR-2011

Target 1

0

The wall 7.8 m

0

1 m

- Az + Az

R+H

-H

SAR plane

1m

2m

3m

4m

5m

6m

7mTarget 2

Short range 3D imaging with NW SAR

LNDES, IRE NASU UKRAINE & ITCC, Industry-University Collaboration Foundation, CNU, Korea APSAR-2011

Target 1

0

The wall 7.8 m

0

1 m

- Az + Az

R+H

-H

SAR plane

1m

2m

3m

4m

5m

6m

7mTarget 2

Short range 3D imaging with NW SAR

LNDES, IRE NASU UKRAINE & ITCC, Industry-University Collaboration Foundation, CNU, Korea APSAR-2011

Target 1

0

The wall 7.8 m

0

1 m

- Az + Az

R+H

-H

SAR plane

1m

2m

3m

4m

5m

6m

7mTarget 2

Short range 3D imaging with NW SAR

LNDES, IRE NASU UKRAINE & ITCC, Industry-University Collaboration Foundation, CNU, Korea APSAR-2011

Target 1

0

The wall 7.8 m

0

1 m

- Az + Az

R+H

-H

SAR plane

1m

2m

3m

4m

5m

6m

7mTarget 2

Short range 3D imaging with NW SAR

LNDES, IRE NASU UKRAINE & ITCC, Industry-University Collaboration Foundation, CNU, Korea APSAR-2011

Geometry of Static Nonswitchable Antenna Array

Geometry of Static Nonswitchable Antenna Array

τ −qτ −( 2QτY

X

Di(q)

targetPi

yi

xi

xqAAA Q−AAAτ −0τQτ −AQAτA2τZ

Y

targetPi

z0

0

Dsr

yi

( ;ξ ϑa)

b)

- distance from q-th radiator to i-th local reflectingarea (resolution cell)

( ) 2D 2q Q- is a radiator numberQ +- is total number of radiatorsz- is height of the array over the plane(0 0- coordinates of the phase center of the radiatorA( X(x y- are coordinates of the i-th local reflecting area

of the sceneP( 0x- are the Cartesian coordinates q-th radiatorA

LO freq: 30 GHz sampling freq: 2 GHz antenna length: 100cm number of radiators: 100 Equal delays between antenna

elements – 90 cm Two targets

Modeled scene

Range 65m 10m

SAR Image using Static Antenna Array and Random Waveform

LO freq: 30 GHz sampling freq: 2 GHz antenna length: 100cm number of radiators: 200 Random delays between

antenna elements – 90 cm

Modeled scene

Range 100m

Single scan

SAR Image using Static Antenna Array and Random Waveform

LO freq: 30 GHz sampling freq: 2 GHz antenna length: 100cm number of radiators: 200 Random delays between

antenna elements – 90 cm

Modeled scene

Range 100m

Integration of ten realizations

Antenna with Aperture synthesizing for W-band (4 mm) Microwave “Video Camera”

D2 and 3D imaging in real-time scale and Video in W-band (4 mm)

PENSTATE &

R.Narayanan & K.Lukin Noise Radar History and Future..

146

Обзор существующих методов и систем приема радиоизлучений

Детектор / Коррелятор

Компьютер / Передача данных

Усилитель промежуточной частоты~

Гетеродин

Усилитель радио

частоты

Радиотелескоп(аппаратура)

Смеситель

(α;Τ ∗)Θ∼λ/L

1

Пеленгатор

Антенна Антенна

β∆l=l 1-l 2

Радио сигнал

Радио сигнал

+Задержка сигнала ∆t=∆l/c

Радиометр

B (База)

β∼λ/B2

Радиометр

3

Радиометр

Радиометр

Радиометр

Радиометр

Радиометр

Радиометр

Радиометр

Многоканальный радиометр

PENSTATE &

R.Narayanan & K.Lukin Noise Radar History and Future..

147

Обзор существующих методов и систем приема радиоизлучений

4Механическое перемещение объекта в фокальном пятне

Радиометр

5

B (База)

Триангуляция

Радиометр

PENSTATE &

R.Narayanan & K.Lukin Noise Radar History and Future..

148

Основные характеристики радиометра:

ΔfВх.=500 (МГц) КУс. ≤ 97 (дБ) Кш ≤ 3 , Tш ≤ 600K δT ≈ 0,06K

АЧХ приемных трактов

Основные характеристики измерительного комплекса, модернизированного для работы в радиометрическом режиме

Антены с синтезируемой диаграммой направленности

Радио приемное

устройство 1

Блок управления 2

Блок управления 1

Радио приемное

устройство 2

Разработка ОНДЭС, ИРЭ НАН Украины, авторы: К.А. Лукин и другие

SAR processor

Radiometric coherent image

Rec.

Ref.

Ran

ge

Point-like source(emitting object)

Interferometric radiometer response Synthesized (SAR) beam

OX

Y

Radiometric Coherent Imaging

PENSTATE &

R.Narayanan & K.Lukin Noise Radar History and Future..

150

Дальность

Отклик бистатического радиометра

Луч антенны с синтезируемой диаграммой направленности

1 2

Даль

ност

ь

Моделирование откликов бистатического радиометра с антеннами с синтезируемой диаграммой направленности от системы точечных излучателей.

Дальность

Радар

Объект

Бистатический радар

Объект

Бистатический радиометр

Объект

l1-l2l1+l22l

PENSTATE &

R.Narayanan & K.Lukin Noise Radar History and Future..

( ) ( ),( , ) ,

1

A jw x yc aI x y R x y ea aa

τ = ∆τ ⋅∑

=

( , ) aa

l (x, y)x y

c∆

∆τ =

( )( )

1exp 22 22i

w j la i ap

εµ ϕ = π − λ

(1)

(2)

(3)

Radiometric Coherent Imaging

PENSTATE &

R.Narayanan & K.Lukin Noise Radar History and Future..

Radiometer calibration using NW generator

SAR beam 1

SAR beam 2 Resolution

cell

Target

SAR beam 1

SAR beam 2

Range

Baseline

PENSTATE &

R.Narayanan & K.Lukin Noise Radar History and Future..

4.2) Radiometric coherent imaging

antennas positions= 31 (La=9cm)

Temperature of all objects is near 300K. Absorbers are objects with the highest emissivity and “beam usage efficiency” Near range targets are not repeatable from measurement to measurement.

antennas positions= 51 (La=15cm)

R.Narayanan & K.Lukin Noise Radar History and Future.. PENSTATE &

Conclusions Noise radar gives radar engineers unique Capabilities in Radar design….

R.Narayanan & K.Lukin Noise Radar History and Future.. PENSTATE &

Conclusions Noise Radar gives radar engineers unique Capabilities in Radar design…. …but it requires from them overcoming stereotypes of Traditional Radar engineering

R.Narayanan & K.Lukin Noise Radar History and Future.. PENSTATE &

What is needed

156 4/7/2014 NRT-2012 Yalta Crimea UKRAINE

R.Narayanan & K.Lukin Noise Radar History and Future.. PENSTATE &

What is needed FUNDING!

157 4/7/2014 NRT-2012 Yalta Crimea UKRAINE

R.Narayanan & K.Lukin Noise Radar History and Future.. PENSTATE &

What is needed FUNDING!

More researchers making advances

158 4/7/2014 NRT-2012 Yalta Crimea UKRAINE

R.Narayanan & K.Lukin Noise Radar History and Future.. PENSTATE &

Final thoughts (borrowed from Ram Narayanan –

Penstate)

R.Narayanan & K.Lukin Noise Radar History and Future.. PENSTATE &

What is needed FUNDING!

International cooperation of NR

and SP researchers High-level industry involvement to

promote commercial development 160 4/7/2014 NRT-2012 Yalta Crimea UKRAINE

PENSTATE &

R.Narayanan & K.Lukin Noise Radar History and Future..

4/7/2014 161 NRT-2012 Yalta Crimea UKRAINE

PENSTATE &

R.Narayanan & K.Lukin Noise Radar History and Future..

4/7/2014 162 NRT-2012 Yalta Crimea UKRAINE

International Conference on Noise Radar Technology

Yalta, Crimea, UKRAINE, September 27-29, 2012

Organized by

Laboratory of Nonlinear Dynamics of Electronic Systems, Institute for Radiophysics and Electronics, NAS of Ukraine,

IRE NASU

in cooperation with

IEEE AP/C/EMC/SP Kharkov Joint Chapter of Ukraine Section, Academy of Sciences of Applied Radioelectronics, and National Antenna Association of Ukraine

APPLIEDRADIO

ELECTRONICS

Noise Radar Technology - NRT-2012

…10 Years after NRTW-2002…

27-29 September, 2012, Yalta, Crimea, UKRAINE

Thank You !