Jarmo Hietarinta- Ribbon knots in the Faddeev-Skyrme model

Post on 06-Apr-2018

228 views 0 download

Transcript of Jarmo Hietarinta- Ribbon knots in the Faddeev-Skyrme model

8/3/2019 Jarmo Hietarinta- Ribbon knots in the Faddeev-Skyrme model

http://slidepdf.com/reader/full/jarmo-hietarinta-ribbon-knots-in-the-faddeev-skyrme-model 1/72

Ribbon knotsin the Faddeev-Skyrme model

Jarmo HietarintaUniversity of Turku, Turku, Finland

in collaboration with Petri Salo and Juha Jaykka

Jarmo.Hietarinta@utu.fi

LMS Durham Symposium: Topological Solitons and their Applications

August 2004

Ribbon knots in the Faddeev-Skyrme model – p.1/3

8/3/2019 Jarmo Hietarinta- Ribbon knots in the Faddeev-Skyrme model

http://slidepdf.com/reader/full/jarmo-hietarinta-ribbon-knots-in-the-faddeev-skyrme-model 2/72

The setting

Carrier field: 3D unit vector field n in R3

Ribbon knots in the Faddeev-Skyrme model – p.2/3

8/3/2019 Jarmo Hietarinta- Ribbon knots in the Faddeev-Skyrme model

http://slidepdf.com/reader/full/jarmo-hietarinta-ribbon-knots-in-the-faddeev-skyrme-model 3/72

The setting

Carrier field: 3D unit vector field n in R3

Locally smooth

Ribbon knots in the Faddeev-Skyrme model – p.2/3

8/3/2019 Jarmo Hietarinta- Ribbon knots in the Faddeev-Skyrme model

http://slidepdf.com/reader/full/jarmo-hietarinta-ribbon-knots-in-the-faddeev-skyrme-model 4/72

The setting

Carrier field: 3D unit vector field n in R3

Locally smooth

Asymptotically trivial: n(r) → n∞, when |r| → ∞

Ribbon knots in the Faddeev-Skyrme model – p.2/3

8/3/2019 Jarmo Hietarinta- Ribbon knots in the Faddeev-Skyrme model

http://slidepdf.com/reader/full/jarmo-hietarinta-ribbon-knots-in-the-faddeev-skyrme-model 5/72

The setting

Carrier field: 3D unit vector field n in R3

Locally smooth

Asymptotically trivial: n(r) → n∞, when |r| → ∞⇒ can compactify R3 → S 3.

Ribbon knots in the Faddeev-Skyrme model – p.2/3

8/3/2019 Jarmo Hietarinta- Ribbon knots in the Faddeev-Skyrme model

http://slidepdf.com/reader/full/jarmo-hietarinta-ribbon-knots-in-the-faddeev-skyrme-model 6/72

The setting

Carrier field: 3D unit vector field n in R3

Locally smooth

Asymptotically trivial:n

(r

) →n∞, when |

r

| → ∞⇒ can compactify R3 → S 3.

⇒ n : S 3 → S 2.

Ribbon knots in the Faddeev-Skyrme model – p.2/3

8/3/2019 Jarmo Hietarinta- Ribbon knots in the Faddeev-Skyrme model

http://slidepdf.com/reader/full/jarmo-hietarinta-ribbon-knots-in-the-faddeev-skyrme-model 7/72

The setting

Carrier field: 3D unit vector field n in R3

Locally smooth

Asymptotically trivial:n

(r

) →n∞, when |

r

| → ∞⇒ can compactify R3 → S 3.

⇒ n : S 3 → S 2.

Such mappings are characterized by the Hopf charge, i.e., by the

homotopy class π3(S 2) = Z.

Ribbon knots in the Faddeev-Skyrme model – p.2/3

8/3/2019 Jarmo Hietarinta- Ribbon knots in the Faddeev-Skyrme model

http://slidepdf.com/reader/full/jarmo-hietarinta-ribbon-knots-in-the-faddeev-skyrme-model 8/72

Example of vortex ring with Hopf charge 1:

n =

4(2xz − y(r2 − 1))

(1 + r2)2,

4(2yz + x(r2 − 1))

(1 + r2)2, 1−

8(r2 − z2)

(1 + r2)2

.

where r2 = x2 + y2 + z2.

Ribbon knots in the Faddeev-Skyrme model – p.3/3

8/3/2019 Jarmo Hietarinta- Ribbon knots in the Faddeev-Skyrme model

http://slidepdf.com/reader/full/jarmo-hietarinta-ribbon-knots-in-the-faddeev-skyrme-model 9/72

Example of vortex ring with Hopf charge 1:

n =

4(2xz − y(r2 − 1))

(1 + r2)2,

4(2yz + x(r2 − 1))

(1 + r2)2, 1−

8(r2 − z2)

(1 + r2)2

.

where r2 = x2 + y2 + z2.

Note that•n = (0, 0, 1) at infinity (any direction).•n = (0, 0,−1) on the ring x2 + y2 = 1, z = 0 (vortex core).

Ribbon knots in the Faddeev-Skyrme model – p.3/3

8/3/2019 Jarmo Hietarinta- Ribbon knots in the Faddeev-Skyrme model

http://slidepdf.com/reader/full/jarmo-hietarinta-ribbon-knots-in-the-faddeev-skyrme-model 10/72

Example of vortex ring with Hopf charge 1:

n =

4(2xz − y(r2 − 1))

(1 + r2)2,

4(2yz + x(r2 − 1))

(1 + r2)2, 1−

8(r2 − z2)

(1 + r2)2

.

where r2 = x2 + y2 + z2.

Note that•n = (0, 0, 1) at infinity (any direction).•n = (0, 0,−1) on the ring x2 + y2 = 1, z = 0 (vortex core).

Computing the Hopf charge:

Givenn

:R3

→ S 2

define F ij = abcna

∂ inb

∂  jnc

.

Ribbon knots in the Faddeev-Skyrme model – p.3/3

8/3/2019 Jarmo Hietarinta- Ribbon knots in the Faddeev-Skyrme model

http://slidepdf.com/reader/full/jarmo-hietarinta-ribbon-knots-in-the-faddeev-skyrme-model 11/72

Example of vortex ring with Hopf charge 1:

n =

4(2xz − y(r2 − 1))

(1 + r2)2,

4(2yz + x(r2 − 1))

(1 + r2)2, 1−

8(r2 − z2)

(1 + r2)2

.

where r2 = x2 + y2 + z2.

Note that•n = (0, 0, 1) at infinity (any direction).•n = (0, 0,−1) on the ring x2 + y2 = 1, z = 0 (vortex core).

Computing the Hopf charge:

Givenn

:R3

→ S 2

define F ij = abcna

∂ inb

∂  jnc

.Given F ij construct A j so that F ij = ∂ iA j − ∂  jAi,

Ribbon knots in the Faddeev-Skyrme model – p.3/3

8/3/2019 Jarmo Hietarinta- Ribbon knots in the Faddeev-Skyrme model

http://slidepdf.com/reader/full/jarmo-hietarinta-ribbon-knots-in-the-faddeev-skyrme-model 12/72

Example of vortex ring with Hopf charge 1:

n =

4(2xz − y(r2 − 1))

(1 + r2)2,

4(2yz + x(r2 − 1))

(1 + r2)2, 1−

8(r2 − z2)

(1 + r2)2

.

where r2 = x2 + y2 + z2.

Note that•n = (0, 0, 1) at infinity (any direction).•n = (0, 0,−1) on the ring x2 + y2 = 1, z = 0 (vortex core).

Computing the Hopf charge:

Givenn

:R3

→ S 2

define F ij = abcna

∂ inb

∂  jnc

.Given F ij construct A j so that F ij = ∂ iA j − ∂  jAi,then

Q =1

16π2   ijkAiF  jk d3x.

Ribbon knots in the Faddeev-Skyrme model – p.3/3

8/3/2019 Jarmo Hietarinta- Ribbon knots in the Faddeev-Skyrme model

http://slidepdf.com/reader/full/jarmo-hietarinta-ribbon-knots-in-the-faddeev-skyrme-model 13/72

Possible physical realization

Ribbon knots in the Faddeev-Skyrme model – p.4/3

8/3/2019 Jarmo Hietarinta- Ribbon knots in the Faddeev-Skyrme model

http://slidepdf.com/reader/full/jarmo-hietarinta-ribbon-knots-in-the-faddeev-skyrme-model 14/72

Faddeev’s model

In 1975 Faddeev proposed the Lagrangian (energy)

E  =

 

(∂ in)2 + g F 2ij

d3x, F ij := n · ∂ in× ∂  jn.

Ribbon knots in the Faddeev-Skyrme model – p.5/3

8/3/2019 Jarmo Hietarinta- Ribbon knots in the Faddeev-Skyrme model

http://slidepdf.com/reader/full/jarmo-hietarinta-ribbon-knots-in-the-faddeev-skyrme-model 15/72

Faddeev’s model

In 1975 Faddeev proposed the Lagrangian (energy)

E  =

 

(∂ in)2 + g F 2ij

d3x, F ij := n · ∂ in× ∂  jn.

Under the scaling r → λr the integrated kinetic term scales as λand the integrated F 2 term as λ−1.

Ribbon knots in the Faddeev-Skyrme model – p.5/3

8/3/2019 Jarmo Hietarinta- Ribbon knots in the Faddeev-Skyrme model

http://slidepdf.com/reader/full/jarmo-hietarinta-ribbon-knots-in-the-faddeev-skyrme-model 16/72

Faddeev’s model

In 1975 Faddeev proposed the Lagrangian (energy)

E  =

 

(∂ in)2 + g F 2ij

d3x, F ij := n · ∂ in× ∂  jn.

Under the scaling r → λr the integrated kinetic term scales as λand the integrated F 2 term as λ−1.

Therefore nontrivial configurations will attain some fixed size

determined by the dimensional coupling constant g. (Virialtheorem)

Ribbon knots in the Faddeev-Skyrme model – p.5/3

8/3/2019 Jarmo Hietarinta- Ribbon knots in the Faddeev-Skyrme model

http://slidepdf.com/reader/full/jarmo-hietarinta-ribbon-knots-in-the-faddeev-skyrme-model 17/72

Faddeev’s model

In 1975 Faddeev proposed the Lagrangian (energy)

E  =

 

(∂ in)2 + g F 2ij

d3x, F ij := n · ∂ in× ∂  jn.

Under the scaling r → λr the integrated kinetic term scales as λand the integrated F 2 term as λ−1.

Therefore nontrivial configurations will attain some fixed size

determined by the dimensional coupling constant g. (Virialtheorem)

Vakulenko and Kapitanskii (1979): a lower limit for the energy,

E ≥ c |Q|34 ,

where c is some constant, and Q the Hopf charge.

Ribbon knots in the Faddeev-Skyrme model – p.5/3

8/3/2019 Jarmo Hietarinta- Ribbon knots in the Faddeev-Skyrme model

http://slidepdf.com/reader/full/jarmo-hietarinta-ribbon-knots-in-the-faddeev-skyrme-model 18/72

Other models

Other field theoretical models having configurations withnonzero Hopf charge include:

de Vega (1978), Higgs-models (Abelian and SU(2)).

Nicole (1978), L = −−1

4(∂ µna)23/2

Kundu and Rubakov (1982), S 2 nonlinear σ-model.

Aratyn, Ferreira, Zimerman (1999) L = −

F 2µν 3/4

Ribbon knots in the Faddeev-Skyrme model – p.6/3

i i f ’

8/3/2019 Jarmo Hietarinta- Ribbon knots in the Faddeev-Skyrme model

http://slidepdf.com/reader/full/jarmo-hietarinta-ribbon-knots-in-the-faddeev-skyrme-model 19/72

Numerical studies of Faddeev’s model

Question: What are the minimun energy states for various Hopfcharges?

Ribbon knots in the Faddeev-Skyrme model – p.7/3

N i l di f F dd ’ d l

8/3/2019 Jarmo Hietarinta- Ribbon knots in the Faddeev-Skyrme model

http://slidepdf.com/reader/full/jarmo-hietarinta-ribbon-knots-in-the-faddeev-skyrme-model 20/72

Numerical studies of Faddeev’s model

Question: What are the minimun energy states for various Hopfcharges?

Gladikowski and Hellmund (1997): Charges 1 and 2, also

various other models, cylindrical ansatz.

Ribbon knots in the Faddeev-Skyrme model – p.7/3

N i l t di f F dd ’ d l

8/3/2019 Jarmo Hietarinta- Ribbon knots in the Faddeev-Skyrme model

http://slidepdf.com/reader/full/jarmo-hietarinta-ribbon-knots-in-the-faddeev-skyrme-model 21/72

Numerical studies of Faddeev’s model

Question: What are the minimun energy states for various Hopfcharges?

Gladikowski and Hellmund (1997): Charges 1 and 2, also

various other models, cylindrical ansatz.

Faddeev and Niemi (1997): Charges 1 and 2, cylindricalansatz, speculations on trefoil knots.

Ribbon knots in the Faddeev-Skyrme model – p.7/3

N i l t di f F dd ’ d l

8/3/2019 Jarmo Hietarinta- Ribbon knots in the Faddeev-Skyrme model

http://slidepdf.com/reader/full/jarmo-hietarinta-ribbon-knots-in-the-faddeev-skyrme-model 22/72

Numerical studies of Faddeev’s model

Question: What are the minimun energy states for various Hopfcharges?

Gladikowski and Hellmund (1997): Charges 1 and 2, also

various other models, cylindrical ansatz.

Faddeev and Niemi (1997): Charges 1 and 2, cylindricalansatz, speculations on trefoil knots.

Battye and Sutcliffe (1998): Charges 1-8, ring initial states,deformation to trefoil seen.

Ribbon knots in the Faddeev-Skyrme model – p.7/3

N i l t di f F dd ’ d l

8/3/2019 Jarmo Hietarinta- Ribbon knots in the Faddeev-Skyrme model

http://slidepdf.com/reader/full/jarmo-hietarinta-ribbon-knots-in-the-faddeev-skyrme-model 23/72

Numerical studies of Faddeev’s model

Question: What are the minimun energy states for various Hopfcharges?

Gladikowski and Hellmund (1997): Charges 1 and 2, also

various other models, cylindrical ansatz.

Faddeev and Niemi (1997): Charges 1 and 2, cylindricalansatz, speculations on trefoil knots.

Battye and Sutcliffe (1998): Charges 1-8, ring initial states,deformation to trefoil seen.

Hietarinta and Salo

(1999): Linked initial configurations, deformation to trefoilseen.(2000): More on the lowest energy states, agreement withVK bound.(2004): Knotting of twisted vortices (w/Jäykkä).

Ribbon knots in the Faddeev-Skyrme model – p.7/3

8/3/2019 Jarmo Hietarinta- Ribbon knots in the Faddeev-Skyrme model

http://slidepdf.com/reader/full/jarmo-hietarinta-ribbon-knots-in-the-faddeev-skyrme-model 24/72

Ribbon knots in the Faddeev-Skyrme model – p.8/3

Our work

8/3/2019 Jarmo Hietarinta- Ribbon knots in the Faddeev-Skyrme model

http://slidepdf.com/reader/full/jarmo-hietarinta-ribbon-knots-in-the-faddeev-skyrme-model 25/72

Our work

Full three dimensional minimization.

Ribbon knots in the Faddeev-Skyrme model – p.9/3

Our work

8/3/2019 Jarmo Hietarinta- Ribbon knots in the Faddeev-Skyrme model

http://slidepdf.com/reader/full/jarmo-hietarinta-ribbon-knots-in-the-faddeev-skyrme-model 26/72

Our work

Full three dimensional minimization.

Use n rather than w := n1+in21+n3

, because singularities in w

are hard to handle numerically.

(w = ∞ at the vortex core or at spatial infinity)However, with n have to renormalize to n2 = 1 after each

iteration step.

Ribbon knots in the Faddeev-Skyrme model – p.9/3

Our work

8/3/2019 Jarmo Hietarinta- Ribbon knots in the Faddeev-Skyrme model

http://slidepdf.com/reader/full/jarmo-hietarinta-ribbon-knots-in-the-faddeev-skyrme-model 27/72

Our work

Full three dimensional minimization.

Use n rather than w := n1+in21+n3

, because singularities in w

are hard to handle numerically.

(w = ∞ at the vortex core or at spatial infinity)However, with n have to renormalize to n2 = 1 after each

iteration step.

Discretize so that code parallelization simple.

Ribbon knots in the Faddeev-Skyrme model – p.9/3

Our work

8/3/2019 Jarmo Hietarinta- Ribbon knots in the Faddeev-Skyrme model

http://slidepdf.com/reader/full/jarmo-hietarinta-ribbon-knots-in-the-faddeev-skyrme-model 28/72

Our work

Full three dimensional minimization.

Use n rather than w := n1+in21+n3

, because singularities in w

are hard to handle numerically.

(w = ∞ at the vortex core or at spatial infinity)However, with n have to renormalize to n2 = 1 after each

iteration step.

Discretize so that code parallelization simple.

More complicated initial states generated, in particularlinked unknots.

Ribbon knots in the Faddeev-Skyrme model – p.9/3

Our work

8/3/2019 Jarmo Hietarinta- Ribbon knots in the Faddeev-Skyrme model

http://slidepdf.com/reader/full/jarmo-hietarinta-ribbon-knots-in-the-faddeev-skyrme-model 29/72

Our work

Full three dimensional minimization.

Use n rather than w := n1+in21+n3

, because singularities in w

are hard to handle numerically.

(w = ∞ at the vortex core or at spatial infinity)However, with n have to renormalize to n2 = 1 after each

iteration step.

Discretize so that code parallelization simple.

More complicated initial states generated, in particularlinked unknots.

Special emphasis on visualization.

Ribbon knots in the Faddeev-Skyrme model – p.9/3

Computational

8/3/2019 Jarmo Hietarinta- Ribbon knots in the Faddeev-Skyrme model

http://slidepdf.com/reader/full/jarmo-hietarinta-ribbon-knots-in-the-faddeev-skyrme-model 30/72

Computational

Discretized on a cubic lattice, size typically 2403.

Ribbon knots in the Faddeev-Skyrme model – p.10/3

Computational

8/3/2019 Jarmo Hietarinta- Ribbon knots in the Faddeev-Skyrme model

http://slidepdf.com/reader/full/jarmo-hietarinta-ribbon-knots-in-the-faddeev-skyrme-model 31/72

Computational

Discretized on a cubic lattice, size typically 2403.

Discretized the Lagrangian (energy):∂ in on links, F ij on plaquettes.

Ribbon knots in the Faddeev-Skyrme model – p.10/3

Computational

8/3/2019 Jarmo Hietarinta- Ribbon knots in the Faddeev-Skyrme model

http://slidepdf.com/reader/full/jarmo-hietarinta-ribbon-knots-in-the-faddeev-skyrme-model 32/72

Computational

Discretized on a cubic lattice, size typically 2403.

Discretized the Lagrangian (energy):∂ in on links, F ij on plaquettes.

Computed the gradient n(r)L symbolically.

Ribbon knots in the Faddeev-Skyrme model – p.10/3

Computational

8/3/2019 Jarmo Hietarinta- Ribbon knots in the Faddeev-Skyrme model

http://slidepdf.com/reader/full/jarmo-hietarinta-ribbon-knots-in-the-faddeev-skyrme-model 33/72

Computational

Discretized on a cubic lattice, size typically 2403.

Discretized the Lagrangian (energy):∂ in on links, F ij on plaquettes.

Computed the gradient n(r)L symbolically.

Used dissipative dynamics: nnew = nold − δn(r)L.

Ribbon knots in the Faddeev-Skyrme model – p.10/3

Computational

8/3/2019 Jarmo Hietarinta- Ribbon knots in the Faddeev-Skyrme model

http://slidepdf.com/reader/full/jarmo-hietarinta-ribbon-knots-in-the-faddeev-skyrme-model 34/72

Computational

Discretized on a cubic lattice, size typically 2403.

Discretized the Lagrangian (energy):∂ in on links, F ij on plaquettes.

Computed the gradient n(r)L symbolically.

Used dissipative dynamics: nnew = nold − δn(r)L.

Program parallelizes well, have used Cray T3E, SGI Origin2000, IBM SP

Ribbon knots in the Faddeev-Skyrme model – p.10/3

How to visualize vector fields?

8/3/2019 Jarmo Hietarinta- Ribbon knots in the Faddeev-Skyrme model

http://slidepdf.com/reader/full/jarmo-hietarinta-ribbon-knots-in-the-faddeev-skyrme-model 35/72

How to visualize vector fields?

Cannot draw vectors at every point.

Flow lines do not make sense, because of global gaugeinvariance.

(In fact our vectors could live in another space, e.g., spin.)

Ribbon knots in the Faddeev-Skyrme model – p.11/3

How to visualize vector fields?

8/3/2019 Jarmo Hietarinta- Ribbon knots in the Faddeev-Skyrme model

http://slidepdf.com/reader/full/jarmo-hietarinta-ribbon-knots-in-the-faddeev-skyrme-model 36/72

How to visualize vector fields?

Cannot draw vectors at every point.

Flow lines do not make sense, because of global gaugeinvariance.

(In fact our vectors could live in another space, e.g., spin.)

Ribbon knots in the Faddeev-Skyrme model – p.11/3

How to visualize vector fields?

8/3/2019 Jarmo Hietarinta- Ribbon knots in the Faddeev-Skyrme model

http://slidepdf.com/reader/full/jarmo-hietarinta-ribbon-knots-in-the-faddeev-skyrme-model 37/72

Cannot draw vectors at every point.

Flow lines do not make sense, because of global gaugeinvariance.

(In fact our vectors could live in another space, e.g., spin.)

Vector are represented by points on the sphere. We have onefixed direction, n at infinity, define it as the north pole, i.e,n∞ = (0, 0, 1). All other directions are defined by latitude andlongitude.

Ribbon knots in the Faddeev-Skyrme model – p.11/3

How to visualize vector fields?

8/3/2019 Jarmo Hietarinta- Ribbon knots in the Faddeev-Skyrme model

http://slidepdf.com/reader/full/jarmo-hietarinta-ribbon-knots-in-the-faddeev-skyrme-model 38/72

Cannot draw vectors at every point.

Flow lines do not make sense, because of global gaugeinvariance.

(In fact our vectors could live in another space, e.g., spin.)

Vector are represented by points on the sphere. We have onefixed direction, n at infinity, define it as the north pole, i.e,n∞ = (0, 0, 1). All other directions are defined by latitude andlongitude.

Latitude is invariant under global gauge rotations that keep thenorth pole fixed, therefore plot equilatitude surfaces (i.e., pointsat which n3 has a fixed value).

Ribbon knots in the Faddeev-Skyrme model – p.11/3

How to visualize vector fields?

8/3/2019 Jarmo Hietarinta- Ribbon knots in the Faddeev-Skyrme model

http://slidepdf.com/reader/full/jarmo-hietarinta-ribbon-knots-in-the-faddeev-skyrme-model 39/72

Cannot draw vectors at every point.

Flow lines do not make sense, because of global gaugeinvariance.

(In fact our vectors could live in another space, e.g., spin.)

Vector are represented by points on the sphere. We have onefixed direction, n at infinity, define it as the north pole, i.e,n∞ = (0, 0, 1). All other directions are defined by latitude andlongitude.

Latitude is invariant under global gauge rotations that keep thenorth pole fixed, therefore plot equilatitude surfaces (i.e., pointsat which n3 has a fixed value).

Longitudes are represented by colors on the equilatitudesurface. (Under a global gauge rotation only colors change).

Ribbon knots in the Faddeev-Skyrme model – p.11/3

Isosurface n3 = 0 (equator) for |Q| = 1, 2

8/3/2019 Jarmo Hietarinta- Ribbon knots in the Faddeev-Skyrme model

http://slidepdf.com/reader/full/jarmo-hietarinta-ribbon-knots-in-the-faddeev-skyrme-model 40/72

3 ( q ) |Q| ,

Color order and handedness of twist determine Hopf charge.Inside the torus is the core, where n3 = −1.

These figures were made using the program funcs developed by

J. Ruokolainen at CSC, Espoo, Finland

Ribbon knots in the Faddeev-Skyrme model – p.12/3

Results for linked unknots of charge 1+1

8/3/2019 Jarmo Hietarinta- Ribbon knots in the Faddeev-Skyrme model

http://slidepdf.com/reader/full/jarmo-hietarinta-ribbon-knots-in-the-faddeev-skyrme-model 41/72

g

Ribbon knots in the Faddeev-Skyrme model – p.13/3

Deformation 5 + 4 − 2 → trefoil

8/3/2019 Jarmo Hietarinta- Ribbon knots in the Faddeev-Skyrme model

http://slidepdf.com/reader/full/jarmo-hietarinta-ribbon-knots-in-the-faddeev-skyrme-model 42/72

Ribbon knots in the Faddeev-Skyrme model – p.14/3

Energy evolution in minimization

8/3/2019 Jarmo Hietarinta- Ribbon knots in the Faddeev-Skyrme model

http://slidepdf.com/reader/full/jarmo-hietarinta-ribbon-knots-in-the-faddeev-skyrme-model 43/72

0 20000 40000 60000 80000

Number of iterations

0.0

100.0

200.0

300.0

400.0

500.0

600.0

700.0

   T  o   t  a   l   e

  n  e  r  g  y

2+2+2

1+1+2

2+2−2

1−1+2 1−1−2

2−2+2

2−2−2

1+1−2

Ribbon knots in the Faddeev-Skyrme model – p.15/3

Vakulenko bound

8/3/2019 Jarmo Hietarinta- Ribbon knots in the Faddeev-Skyrme model

http://slidepdf.com/reader/full/jarmo-hietarinta-ribbon-knots-in-the-faddeev-skyrme-model 44/72

0 1 2 3 4 5 6 7 8

Q

0.96

0.98

1.00

1.02

1.04

1.06

1.08

1.10

   E   Q    /

   (   E   1

   Q   3   /   4   )

Filled circles give the best result (global minima) we have forgiven Hopf charge; open squares are the results of Battye and

Sutcliffe.

Ribbon knots in the Faddeev-Skyrme model – p.16/3

Different and improved final states

8/3/2019 Jarmo Hietarinta- Ribbon knots in the Faddeev-Skyrme model

http://slidepdf.com/reader/full/jarmo-hietarinta-ribbon-knots-in-the-faddeev-skyrme-model 45/72

Ribbon knots in the Faddeev-Skyrme model – p.17/3

Knot theory

8/3/2019 Jarmo Hietarinta- Ribbon knots in the Faddeev-Skyrme model

http://slidepdf.com/reader/full/jarmo-hietarinta-ribbon-knots-in-the-faddeev-skyrme-model 46/72

The proper knot theoretical setting is to use framed links.

Framing attached to a curve adds local information near thecurve, like twisting around it.

Ribbon knots in the Faddeev-Skyrme model – p.18/3

8/3/2019 Jarmo Hietarinta- Ribbon knots in the Faddeev-Skyrme model

http://slidepdf.com/reader/full/jarmo-hietarinta-ribbon-knots-in-the-faddeev-skyrme-model 47/72

Knot theory

8/3/2019 Jarmo Hietarinta- Ribbon knots in the Faddeev-Skyrme model

http://slidepdf.com/reader/full/jarmo-hietarinta-ribbon-knots-in-the-faddeev-skyrme-model 48/72

The proper knot theoretical setting is to use framed links.

Framing attached to a curve adds local information near thecurve, like twisting around it.

One way to describe framed liks is to use directed ribbons,which are preimages of line segments.

We could use equilatitude line segments, then increasing

latitude and longitude give two directions, their cross product theribbon direction.

Ribbon knots in the Faddeev-Skyrme model – p.18/3

Knot theory

8/3/2019 Jarmo Hietarinta- Ribbon knots in the Faddeev-Skyrme model

http://slidepdf.com/reader/full/jarmo-hietarinta-ribbon-knots-in-the-faddeev-skyrme-model 49/72

The proper knot theoretical setting is to use framed links.

Framing attached to a curve adds local information near thecurve, like twisting around it.

One way to describe framed liks is to use directed ribbons,which are preimages of line segments.

We could use equilatitude line segments, then increasing

latitude and longitude give two directions, their cross product theribbon direction.

In practice we often choose 4 points on equilongitude line near

the south pole (=core)

Ribbon knots in the Faddeev-Skyrme model – p.18/3

Example: ribbon view of Q = −1 unknot

8/3/2019 Jarmo Hietarinta- Ribbon knots in the Faddeev-Skyrme model

http://slidepdf.com/reader/full/jarmo-hietarinta-ribbon-knots-in-the-faddeev-skyrme-model 50/72

Four nearby points on the equator.These figures were made using OpenDX

Ribbon knots in the Faddeev-Skyrme model – p.19/3

Computing the charge

8/3/2019 Jarmo Hietarinta- Ribbon knots in the Faddeev-Skyrme model

http://slidepdf.com/reader/full/jarmo-hietarinta-ribbon-knots-in-the-faddeev-skyrme-model 51/72

For a ribbon define:

twist = linking number of the ribbon core with a ribbon boundary.

writhe = signed crossover number of the ribbon core with itself.

Ribbon knots in the Faddeev-Skyrme model – p.20/3

Computing the charge

8/3/2019 Jarmo Hietarinta- Ribbon knots in the Faddeev-Skyrme model

http://slidepdf.com/reader/full/jarmo-hietarinta-ribbon-knots-in-the-faddeev-skyrme-model 52/72

For a ribbon define:

twist = linking number of the ribbon core with a ribbon boundary.

writhe = signed crossover number of the ribbon core with itself.

linking number = 12 (sum of signed crossings)

Ribbon knots in the Faddeev-Skyrme model – p.20/3

Computing the charge

8/3/2019 Jarmo Hietarinta- Ribbon knots in the Faddeev-Skyrme model

http://slidepdf.com/reader/full/jarmo-hietarinta-ribbon-knots-in-the-faddeev-skyrme-model 53/72

For a ribbon define:

twist = linking number of the ribbon core with a ribbon boundary.

writhe = signed crossover number of the ribbon core with itself.

linking number = 12 (sum of signed crossings)

The Hopf charge can be determined either by

twist + writheorlinking number of the two ribbon boundaries.

Ribbon knots in the Faddeev-Skyrme model – p.20/3

Charge from the ribbon view, Q = −1

8/3/2019 Jarmo Hietarinta- Ribbon knots in the Faddeev-Skyrme model

http://slidepdf.com/reader/full/jarmo-hietarinta-ribbon-knots-in-the-faddeev-skyrme-model 54/72

Sign convention for crossings allows computing the charge.

In this case linking number of ribbon boundaries = −1.

Ribbon knots in the Faddeev-Skyrme model – p.21/3

Charge from the ribbon view, Q = −1

8/3/2019 Jarmo Hietarinta- Ribbon knots in the Faddeev-Skyrme model

http://slidepdf.com/reader/full/jarmo-hietarinta-ribbon-knots-in-the-faddeev-skyrme-model 55/72

Sign convention for crossings allows computing the charge.

In this case linking number of ribbon boundaries = −1.

On the right the ribbon has been turned vertical and isviewed from above: a twist in the ribbon becomes a crossing.

Ribbon knots in the Faddeev-Skyrme model – p.21/3

Charge from the ribbon view, Q = −1

8/3/2019 Jarmo Hietarinta- Ribbon knots in the Faddeev-Skyrme model

http://slidepdf.com/reader/full/jarmo-hietarinta-ribbon-knots-in-the-faddeev-skyrme-model 56/72

Sign convention for crossings allows computing the charge.

In this case linking number of ribbon boundaries = −1.

On the right the ribbon has been turned vertical and isviewed from above: a twist in the ribbon becomes a crossing.

Note that when considering equivalence of ribbon diagrams

type I Reidemeister move is not valid:

Ribbon knots in the Faddeev-Skyrme model – p.21/3

Ribbon view, Q = −2

8/3/2019 Jarmo Hietarinta- Ribbon knots in the Faddeev-Skyrme model

http://slidepdf.com/reader/full/jarmo-hietarinta-ribbon-knots-in-the-faddeev-skyrme-model 57/72

Two ways to get charge −2: twice around small vs. large circle.The first one has twist = −1, writhe = −1,

the second twist = −2, writhe = 0.

Both have boundary linking number = −2.

Ribbon knots in the Faddeev-Skyrme model – p.22/3

Example of ribbon deformation

8/3/2019 Jarmo Hietarinta- Ribbon knots in the Faddeev-Skyrme model

http://slidepdf.com/reader/full/jarmo-hietarinta-ribbon-knots-in-the-faddeev-skyrme-model 58/72

Ribbon knots in the Faddeev-Skyrme model – p.23/3

Close-up of the deformation process

8/3/2019 Jarmo Hietarinta- Ribbon knots in the Faddeev-Skyrme model

http://slidepdf.com/reader/full/jarmo-hietarinta-ribbon-knots-in-the-faddeev-skyrme-model 59/72

Ribbon knots in the Faddeev-Skyrme model – p.24/3

Diagrammatic rule

8/3/2019 Jarmo Hietarinta- Ribbon knots in the Faddeev-Skyrme model

http://slidepdf.com/reader/full/jarmo-hietarinta-ribbon-knots-in-the-faddeev-skyrme-model 60/72

Knot deformations correspond to ribbon deformations, e.g.,crossing and breaking, but the Hopf charge will be conserved.

Ribbon deformation can be seen if we look the sameconfiguration at different latitudes (the first example before), orat same latitude at different times (animations).

Ribbon knots in the Faddeev-Skyrme model – p.25/3

Deformation rule for physical ribbons

8/3/2019 Jarmo Hietarinta- Ribbon knots in the Faddeev-Skyrme model

http://slidepdf.com/reader/full/jarmo-hietarinta-ribbon-knots-in-the-faddeev-skyrme-model 61/72

Ribbon knots in the Faddeev-Skyrme model – p.26/3

Deformation rule for physical ribbons

8/3/2019 Jarmo Hietarinta- Ribbon knots in the Faddeev-Skyrme model

http://slidepdf.com/reader/full/jarmo-hietarinta-ribbon-knots-in-the-faddeev-skyrme-model 62/72

Ribbon knots in the Faddeev-Skyrme model – p.26/3

Deformation rule for physical ribbons

8/3/2019 Jarmo Hietarinta- Ribbon knots in the Faddeev-Skyrme model

http://slidepdf.com/reader/full/jarmo-hietarinta-ribbon-knots-in-the-faddeev-skyrme-model 63/72

Ribbon knots in the Faddeev-Skyrme model – p.26/3

Deformation rule for physical ribbons

8/3/2019 Jarmo Hietarinta- Ribbon knots in the Faddeev-Skyrme model

http://slidepdf.com/reader/full/jarmo-hietarinta-ribbon-knots-in-the-faddeev-skyrme-model 64/72

Ribbon knots in the Faddeev-Skyrme model – p.26/3

Deformation rule for physical ribbons

8/3/2019 Jarmo Hietarinta- Ribbon knots in the Faddeev-Skyrme model

http://slidepdf.com/reader/full/jarmo-hietarinta-ribbon-knots-in-the-faddeev-skyrme-model 65/72

Ribbon knots in the Faddeev-Skyrme model – p.26/3

Deformation rule for physical ribbons

8/3/2019 Jarmo Hietarinta- Ribbon knots in the Faddeev-Skyrme model

http://slidepdf.com/reader/full/jarmo-hietarinta-ribbon-knots-in-the-faddeev-skyrme-model 66/72

Ribbon knots in the Faddeev-Skyrme model – p.26/3

Ribbon connection rules

8/3/2019 Jarmo Hietarinta- Ribbon knots in the Faddeev-Skyrme model

http://slidepdf.com/reader/full/jarmo-hietarinta-ribbon-knots-in-the-faddeev-skyrme-model 67/72

Total Hopf charge = charges of individual unknots + linkingnumber.

Ribbon knots in the Faddeev-Skyrme model – p.27/3

Ribbon connection rules

8/3/2019 Jarmo Hietarinta- Ribbon knots in the Faddeev-Skyrme model

http://slidepdf.com/reader/full/jarmo-hietarinta-ribbon-knots-in-the-faddeev-skyrme-model 68/72

Total Hopf charge = charges of individual unknots + linkingnumber.

Unknots: Twisting the end on the right hand clockwise a fulltwist yields charge +1.

Ribbon knots in the Faddeev-Skyrme model – p.27/3

Ribbon connection rules

8/3/2019 Jarmo Hietarinta- Ribbon knots in the Faddeev-Skyrme model

http://slidepdf.com/reader/full/jarmo-hietarinta-ribbon-knots-in-the-faddeev-skyrme-model 69/72

Total Hopf charge = charges of individual unknots + linkingnumber.

Unknots: Twisting the end on the right hand clockwise a fulltwist yields charge +1.

Linking number depends on the relative direction associatedwith the unknots:

Ribbon knots in the Faddeev-Skyrme model – p.27/3

Physically relevant extensions

8/3/2019 Jarmo Hietarinta- Ribbon knots in the Faddeev-Skyrme model

http://slidepdf.com/reader/full/jarmo-hietarinta-ribbon-knots-in-the-faddeev-skyrme-model 70/72

Faddeev’s model is hidden in more physical models:

Faddeev and Niemi (2000), electrically conducting plasmas

Cho et al (2001), QCD

Cho (2001), Weinberg-Salam model.

Babaev, Faddeev, Niemi (2002) =⇒

Cho (2002), Bose-Einstein condensates

Babaev (2002), triplet superconductors

Ribbon knots in the Faddeev-Skyrme model – p.28/3

Example: Charged two-boson condensate

8/3/2019 Jarmo Hietarinta- Ribbon knots in the Faddeev-Skyrme model

http://slidepdf.com/reader/full/jarmo-hietarinta-ribbon-knots-in-the-faddeev-skyrme-model 71/72

Change of variables: Ψα =√

2mα ρχα, χ = (χ1, χ∗

2), |χ|2 = 1,

na = (χ, σaχ). Eliminate all χ dependence in favor of n. [Translate

A

→ cC

+ q(χ,∂χ)]

Ribbon knots in the Faddeev-Skyrme model – p.29/3

References

8/3/2019 Jarmo Hietarinta- Ribbon knots in the Faddeev-Skyrme model

http://slidepdf.com/reader/full/jarmo-hietarinta-ribbon-knots-in-the-faddeev-skyrme-model 72/72

J. Hietarinta and P. Salo: Faddeev-Hopf knots: dynamics of linked unknots , Phys. Lett. B 451, 60-67 (1999).

J. Hietarinta and P. Salo: Ground state in the Faddeev-Skyrme 

model , Phys. Rev. D 62, 081701(R) (2000).J. Hietarinta, J. Jäykkä and P. Salo: Dynamics of vortices and knots in Faddeev’s model , JHEP Proceedings:PrHEP unesp2002/17http://jhep.sissa.it/archive/prhep/preproceeding/

008/017/sp-proc.pdf

J. Hietarinta, J. Jäykkä and P.Salo: Relaxation of twisted 

vortices in the Faddeev-Skyrme model , Phys. Lett. A 321,324-329 (2004)

Relevant video animations can be seen at

http://users.utu.fi/hietarin/knots/index.html

Ribbon knots in the Faddeev-Skyrme model – p.30/3