J. Collier-Beamline Applications

Post on 05-Mar-2015

55 views 4 download

Transcript of J. Collier-Beamline Applications

ELI Beamlines, Apr 10

j.collier@rl.ac.uk www.clf.rl.ac.uk

Facilities

• Synchrotrons

• Neutron Scattering

• Advanced Lasers

• FELs

• Computing

• Telescopes

• ….

• Accelerator Science

• Particle Physics

• Astronomy

• Space Physics

• Nuclear Physics, …

OUTLINE FOR TODAY

•Diode Pumped Solid State Lasers

(DPSSL) - DIPOLE

•Optical Parametric Chirped Pulse

Amplification (OPCPA) – Vulcan 10 PW

•Their combined relevance to ELI

Cristina Hernandez-Gomez, Ian Ross, Ian Musgrave, Wassem

Shaikh, Andrey Lyachev, Yunxin Tang, Trevor Winstone,

Oleg Chekhlov, Rob Clarke, Rob Heathcote, Kate Lancaster,

Marco Gallimberti, Paul Holigan, Pavel Matousek, Martin Tolley,

David Neely, Peter Norreys, Steve Hancock, Brian Wyborn,

Hiromitsu Kiriyama1, Martin Divoky2, Geoff New3

Klaus Ertel, Mike Filton1APRI, Japanese Atomic Energy Research Institute,

2Institute of Physics, Czech Academy of Sciences, Prague3Imperial College, London

ELI Beamlines, Apr 10

j.collier@rl.ac.uk www.clf.rl.ac.uk

ELI Beamlines, Apr 10

j.collier@rl.ac.uk www.clf.rl.ac.uk

CompressHigh Energy

DepletedPumpOptical

Parametric

Amplification

Crystal

Ultra Short Pulse

Stretch

Input DPSSL Pump

Ross et al, Optics Communications, 144, (1997) 125

Dubietis et al, Optics Communications, 88, (1992) 437High Energy Idler Wave

Optical Parametric Chirped Pulse Amplification

ELI Beamlines, Apr 10

j.collier@rl.ac.uk www.clf.rl.ac.uk

Worlds First Diode Pumped Laser

Uranium Laser

~ 0.1 % Efficient ~60% Efficient

Concept and Technology is not “new” at all

ELI Beamlines, Apr 10

j.collier@rl.ac.uk www.clf.rl.ac.uk

0 1 2 3Pump Duration /

f

0.0

0.2

0.4

0.6

0.8

1.0

Stored Energy

Storage Efficiency

ELI Beamlines, Apr 10

j.collier@rl.ac.uk www.clf.rl.ac.ukLUCIAIntegrated HeadPOLARIS / Dresden

PFS / PFS-Pro Fluid Dynamics of CoolingDIPOLE

ELI Beamlines, Apr 10

j.collier@rl.ac.uk www.clf.rl.ac.uk

Yb:YAG

Slabs

Window

He Gas in

~150 K

Vanes

He Gas out

ELI Beamlines, Apr 10

j.collier@rl.ac.uk www.clf.rl.ac.uk

• Needs good thermo-mechanical properties crystal

• Need large sizes glass

• Ceramics combine best of both

• Can be made with optical quality

• 1 kJ per beam would require ~ 15 x 15 cm aperture slabs

• Feasible - 11 cm available now - scaleable

• Variable doping

• Co-sintered cladding possible

• Non-cubic demonstrated

ELI Beamlines, Apr 10

j.collier@rl.ac.uk www.clf.rl.ac.uk

• Doping of each slab is different

• Slabs in centre more highly doped

• Pseudo-constant longitudinal pumping and

gain

• Excellent Transverse ASE control

• Optimised Thermal Management1 - 40 cm

ELI Beamlines, Apr 10

j.collier@rl.ac.uk www.clf.rl.ac.uk

ELI Beamlines, Apr 10

j.collier@rl.ac.uk www.clf.rl.ac.uk

ELI Beamlines, Apr 10

j.collier@rl.ac.uk www.clf.rl.ac.uk

ELI Beamlines, Apr 10

j.collier@rl.ac.uk www.clf.rl.ac.uk

ELI Beamlines, Apr 10

j.collier@rl.ac.uk www.clf.rl.ac.uk

ELI Beamlines, Apr 10

j.collier@rl.ac.uk www.clf.rl.ac.uk

High rep rate

ps, mJ Pump

Seed

LBOLBO

Stand alone

~3ns shaped

pulse 2 Hz

rate

Long stretch ~3 ns

Diagnostic compressor

Phase ISeed laser 300nm

bandwidth

LBO

High rep rate

ps, mJ Pump

Seed

LBOLBO

Stand alone

~3ns shaped

pulse 2 Hz

rate

Long stretch ~3 ns

Diagnostic compressor

Phase ISeed laser 300nm

bandwidth

LBO

KD*P KD*P

>500 J

600 J

Additional Vulcan2 x 1.2 kJ 3 ns208 beamlines SHG

SHG

527 nm

600 J

527 nm

KD*P KD*P

600 J

Additional Vulcan2 x 1.2 kJ 3 ns208 beamlines SHG

SHG

527 nm

600 J

527 nm

Phase 2

Existing “TAP”

Interaction Area

Interaction Chamber

300 J, 30 fs

+ 1 PW Beam line

New “High Yield”

Interaction Area

Interaction Chamber

300 J, 30 fs

+ TW Beam lines

EX

IST

ING

VU

LC

AN

Compress

KD*P KD*P

>500 J

600 J

Additional Vulcan2 x 1.2 kJ 3 ns208 beamlines SHG

SHG

527 nm

600 J

527 nm

KD*P KD*P

600 J

Additional Vulcan2 x 1.2 kJ 3 ns208 beamlines SHG

SHG

527 nm

600 J

527 nm

Phase 2

Existing “TAP”

Interaction Area

Interaction Chamber

300 J, 30 fs

+ 1 PW Beam line

New “High Yield”

Interaction Area

Interaction Chamber

300 J, 30 fs

+ TW Beam lines

EX

IST

ING

VU

LC

AN

Compress

ELI Beamlines, Apr 10

j.collier@rl.ac.uk www.clf.rl.ac.uk

After Compr.Eff. 60%En=369JΔt=15fsP=25PW

ELI Beamlines, Apr 10

j.collier@rl.ac.uk www.clf.rl.ac.uk 17

5 fs “Rainbow” Oscillator

600 nm – 1000 nm

Delay & Condition

800 nm mJ+ Amplifier

kHz CPA

~ 810 nm

< 20 nm

~ ps

2nd Harmonic Generation

& Condition

~ 405 nm

~ 10nm

~ ps

~ 720 nm

~ 150 nm

~ 810 nm

2- 20 nm

LBO SIGNAL

~ 900 nm

~ 180 nm

E ~ 700 μJ

IDLER

ELI Beamlines, Apr 10

j.collier@rl.ac.uk www.clf.rl.ac.uk

ELI Beamlines, Apr 10

j.collier@rl.ac.uk www.clf.rl.ac.uk

ELI Beamlines, Apr 10

j.collier@rl.ac.uk www.clf.rl.ac.uk

Collimating Lens

Beam In600 Sq

TurningMirror

FocussingParabola

Collimating Parabola & Plasma Mirror

SwitchingMirror

TurningMirror

Beam Out450 Sq

2 Pairs of Gratings

ELI Beamlines, Apr 10

j.collier@rl.ac.uk www.clf.rl.ac.uk

Gold Grating, S-polarization

0.10.1

0.2

0.2

0.4

0.3

0.3

0.7

0.6

0.5

0.8

0.9

0.80.7

0.60.5

0.40.3

0.2

0.1

0.9

Duty Cycle

0.0 0.2 0.4 0.6 0.8 1.0

Gra

tin

g D

ep

th (

Na

no

me

ters

)

0

100

200

300

400

500

600

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

ELI Beamlines, Apr 10

j.collier@rl.ac.uk www.clf.rl.ac.uk

ELI Beamlines, Apr 10

j.collier@rl.ac.uk www.clf.rl.ac.uk

“ ”

• Other key issues need to

improve also, e.g.

• Reliability (x10)

- Brightness (x2)

- Spectral Purity (x5)

- System Efficiency

ELI Beamlines, Apr 10

j.collier@rl.ac.uk www.clf.rl.ac.uk