Introduction to ADSL Modems - Kryzkryz.org/docs/lecture25.pdf · Introduction to ADSL Modems Prof....

Post on 13-Mar-2020

10 views 0 download

Transcript of Introduction to ADSL Modems - Kryzkryz.org/docs/lecture25.pdf · Introduction to ADSL Modems Prof....

Introduction to ADSL ModemsIntroduction to ADSL Modems

Prof. Brian L. Evans

Dept. of Electrical and Comp. Eng.The University of Texas at Austin

Graduate students:Ming Ding , Milos Milosevic (Schlumberger),Zukang Shen

Ex-graduate students:Güner Arslan (Cicada),Biao Lu (Schlumberger)

Ex-undergraduate students:Wade Berglund, Jerel Canales,David Love, Ketan Mandke, Scott Margo, Esther Resendiz, Jeff Wu

Other key collaborators:Lloyd Clark (Schlumberger),Sayfe Kiaei(ASU),Lucio Pessoa(Motorola),Arthur Redfern (Texas Instruments)

http://www.ece.utexas.edu/~bevans/projects/adsl

ADSL

25-2

OutlineOutline• Broadband Access

– Applications– Digital Subscriber Line (DSL) Standards

• ADSL Modulation Methods– ADSL Transceiver Block Diagram– Quadrature Amplitude Modulation– Multicarrier Modulation

• ADSL Transceiver Design– Inter-symbol Interference– Time-Domain Equalization– Frequency-Domain Equalization

• Conclusion

25-3

Residential Application Downstreamrate (kb/s)

Upstreamrate (kb/s)

Willing to pay DemandPotential

Database Access 384 9 High MediumOn-line directory; yellow pages 384 9 Low HighVideo Phone 1,500 1,500 High MediumHome Shopping 1,500 64 Low MediumVideo Games 1,500 1,500 Medium MediumInternet 3,000 384 High MediumBroadcast Video 6,000 0 Low HighHigh definition TV 24,000 0 High Medium

Business Application Downstreamrate (kb/s)

Upstreamrate (kb/s)

Willing to pay DemandPotential

On-line directory; yellow pages 384 9 Medium HighFinancial news 1,500 9 Medium LowVideo phone 1,500 1,500 High LowInternet 3,000 384 High HighVideo conference 3,000 3,000 High LowRemote office 6,000 1,500 High MediumLAN interconnection 10,000 10,000 Medium MediumSupercomputing, CAD 45,000 45,000 High Low

Applications of Broadband AccessApplications of Broadband Access

25-4

DSL Broadband AccessDSL Broadband Access

Customer Premises

downstream

upstreamVoice

Switch

CentralOffice

DSLAM

ADSLmodem

ADSLmodem

LPFLPF

PSTN

Internet

25-5

DSL Broadband Access StandardsDSL Broadband Access Standards

Courtesy of Shawn McCaslin (Cicada Semiconductor, Austin, TX)

xDSL Meaning Data Rate Mode ApplicationsISDN Integrated Services

Digital Network144 kbps Symmetric Internet Access, Voice,

Pair Gain (2 channels)T1 T-Carrier One

(requires two pairs)1.544 Mbps Symmetric Business, Internet

ServiceHDSL High-Speed Digital

Subscriber Line(requires two pairs)

1.544 Mbps Symmetric Pair Gain (12 channels),Internet Access, T1/E1replacement

SHDSL Single Line HDSL 1.544 Mbps Symmetric Same as HDSL exceptpair gain is 24 channels

SplitterlessADSL

SplitterlessAsymmetric DSL(G.Lite)

Up to 1.5 MbpsUp to 512 kbps

DownstreamUpstream

Internet Access, VideoPhone

Full-RateADSL

Asymmetric DSL(G.DMT)

Up to 10 MbpsUp to 1 Mbps

DownstreamUpstream

Internet Access, VideoConferencing,ÿRemoteLAN Access

VDSL Very High-SpeedDigital SubscriberLine (proposed)

Up to 22 MbpsUp to 3 MbpsUp to 6 Mbps

DownstreamUpstream

Symmetric

Internet Access, Video-on-demand, ATM,Fiber to the Hood

25-6

Spectral Compatibility of xDSLSpectral Compatibility of xDSL

10k 100k 1M 10M 100M

POTS

ISDN

ADSL - USA

ADSL - Europe

HDSL/SHDSL

HomePNA

VDSL - FDD

Upstream Downstream Mixed

Frequency (Hz)

optional

1.1 MHz

12 MHz

25-7

P/S

QAMdemod

decoder

invertchannel

=frequency

domainequalizer

S/P

quadratureamplitude

modulation(QAM)

encoder

mirrordataand

N-IFFT

addcyclicprefix

P/SD/A +

transmitfilter

N-FFTand

removemirrored

data

S/Premovecyclicprefix

TRANSMITTER

RECEIVER

N/2 subchannels N real samples

N real samplesN/2 subchannels

timedomain

equalizer(FIRfilter)

receivefilter

+A/D

channel

ADSL ModemADSL Modem

Bits

00110

25-8

Bit ManipulationsBit Manipulations• Serial-to-parallel

converter

• Example of one inputbit stream and twooutput words

• Parallel-to-serialconverter

• Example of two inputwords and one outputbit stream

S/P

Bits

00110110

00

Words

S/P

Words

00110

110

00

Bits

25-9

( ) ( ) ( )

( ) ( ) ( ) ( )( )00

0

2

1

cos

ωωδωωδπωπ

ω

ω

−++∗=

=

FY

ttfty

Amplitude Modulation by Cosine FunctionAmplitude Modulation by Cosine Function• Multiplication in time is convolution in Fourier

domain

• Sifting property of the Dirac delta functional

• Fourier transform property for modulation by acosine

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )000 ttxdtxttttx

txdtxttx

−=−−=−∗

=−=∗

ÿÿ

∞−

∞−

τττδδ

τττδδ

( ) ( ) ( )00 2

1

2

1 ωωωωω −++= FFY

25-10

Amplitude Modulation by Cosine FunctionAmplitude Modulation by Cosine Function

• Example: y(t) = f(t) cos(ω0 t)– f(t) is an ideal lowpass signal

– Assumeω1 << ω0

– Y(ω) is real-valued ifF(ω) is real-valued

• Demodulation is modulation then lowpass filtering

• Similar derivation for modulation with sin(ω0t)

0

1

ω1-ω1ω

F(ω)

ω0

½

-ω0 - ω1 -ω0 + ω1−ω0

ω0 - ω1 ω0 + ω1ω0

½F(ω − ω0)½F(ω + ω0)

( ) ( ) ( )00 2

1

2

1 ωωωωω −++= FFY

Y(ω)

25-11

( ) ( ) ( )

( ) ( ) ( ) ( )( )00

0

2

1

sin

ωωδωωδπωπ

ω

ω

−−+∗=

=

jFY

ttfty

Amplitude Modulation by Sine FunctionAmplitude Modulation by Sine Function• Multiplication in time is convolution in Fourier

domain

• Sifting property of the Dirac delta functional

• Fourier transform property for modulation by asine

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )000 ttxdtxttttx

txdtxttx

−=−−=−∗

=−=∗

ÿÿ

∞−

∞−

τττδδ

τττδδ

( ) ( ) ( )00 22ωωωωω −−+= F

jF

jY

25-12

Amplitude Modulation by Sine FunctionAmplitude Modulation by Sine Function

• Example: y(t) = f(t) sin(ωωωω0 t)– f(t) is an ideal lowpass signal

– Assumeω1 << ω0

– Y(ω) is imaginary-valued ifF(ω) is real-valued

• Demodulation is modulation then lowpass filtering

0

1

ω1-ω1ω

F(ω)

ω

j ½

-ω0 - ω1 -ω0 + ω1−ω0

ω0 - ω1 ω0 + ω1

ω0

-j ½F(ω − ω0)j ½F(ω + ω0)

-j ½

( ) ( ) ( )00 22ωωωωω −−+= F

jF

jY

Y(ω)

25-13

– One carrier– Single signal, occupying the

whole available bandwidth– The symbol rate is the

bandwidth of the signal beingcentered on carrier frequency

QuadratureQuadratureAmplitude Modulation (QAM)Amplitude Modulation (QAM)

frequency

channel

mag

nitu

de

fc

Bits Constellationencoder Bandpass

Lowpassfilter

Lowpassfilter

I

Q

TX

cos(2πfct)

sin(2πfct)

-

ModulatorI

Q iX

00110

25-14

Multicarrier ModulationMulticarrier Modulation

• Divide broadband channel into narrowbandsubchannels

• Discrete Multitone (DMT) modulation– Based on fast Fourier transform (related to Fourier series)

– Standardized for ADSL

– Proposed for VDSL

subchannel

frequency

mag

nitu

de

carrier

channel

every subchannelbehaves like QAM

Subchannels are 4.3 kHz wide in ADSL

25-15

MulticarrierMulticarrier Modulation by Inverse FFTModulation by Inverse FFT

2/NX

x

tfje 12π

1X

x

tfje 22π

x

tfj Ne 2/2π

+

g(t)

2X g(t)

g(t)

x

nN

je

12π

1X

x

nN

je

22π

x

nN

Nj

e2/

+2X

2/NX

Discretetime

g(t) : pulse shaping filter Xi : i th symbol from encoder

I

QiX

25-16

MulticarrierMulticarrier Modulation in ADSLModulation in ADSL

N-pointInverse

FastFourier

Transform(IFFT)

X1

X2

X1*

x0

x1

x2

xN-1X2

*

XN/2

XN/2-1*

X0

N time

samples

N/2subchannels

(carriers)

QAM00101

I

QiX

25-17

MulticarrierMulticarrier Modulation in ADSLModulation in ADSL

CP: Cyclic Prefix

N samplesv samples

CP CPs y m b o l ( i ) s y m b o l ( i+1)

copy copy

D/A + transmit filter

ADSLdownstream upstream

CP 32 4N 512 64

Inverse FFT

25-18

MulticarrierMulticarrier Demodulation in ADSLDemodulation in ADSL

N-pointFast

FourierTransform

(FFT)

N time

samples

N/2subchannels

(carriers)

S/P

*1

~X

*12

~−NX

2

~NX

12

~−NX

0

~X

0~x

1~x

2~x

1~

−Nx

25-19

InterInter--symbol Interference (ISI)symbol Interference (ISI)• Ideal channel

– Impulse response is animpulse

– Frequency response is flat

• Non-ideal channelcauses ISI– Channel memory– Magnitude and phase

variation

• Received symbol isweighted sum ofneighboring symbols– Weights are determined by

channel impulse response

1 1 1

-1

1.7

.4 .1

1

1.7

2.1

11 11

Channelimpulseresponse

Receivedsignal

Thresholdat zero

Detectedsignal

* =

1 .7

1

25-20

Channel Impulse ResponseChannel Impulse Response

25-21

Channel Impulse ResponseChannel Impulse Response

25-22

Cyclic Prefix Helps in Fighting ISICyclic Prefix Helps in Fighting ISI

• Provide guard time between successive symbols– No ISI if channel length is shorter thanν +1 samples

• Choose guard time samples to be a copy of thebeginning of the symbol – cyclic prefix– Cyclic prefix converts linear convolution into circular

convolution

– Need circular convolution so that

symbol ⊗⊗⊗⊗ channel⇔⇔⇔⇔ FFT(symbol) x FFT(channel)– Then division by the FFT(channel) can undo channel distortion

N samplesv samples

CP CPs y m b o l ( i ) s y m b o l ( i+1)

copy copy

25-23

Cyclic Prefix Helps in Fighting ISICyclic Prefix Helps in Fighting ISI

cyclicprefix

equal

to beremoved

Repeatedsymbol

*

=

25-24

Combat ISI with TimeCombat ISI with Time--Domain EqualizerDomain Equalizer

• Channel length is usually longer than cyclic prefix• Use finite impulse response (FIR) filter called a

time-domain equalizer to shorten channel impulseresponse to be no longer than cyclic prefix length

channel

Shortenedchannel

25-25

�∞

−∞=

−=m

mkxmhky ][][][ ( ) ( ) ( ) τττ dtxhty −= ÿ∞

∞−

h[k] y[k]x[k]Representedby its impulseresponse

h(t) y(t)x(t)Representedby its impulseresponse

Convolution ReviewConvolution Review

• Discrete-timeconvolution

• For every k, wecompute a newsummation

• Continuous-timeconvolution

• For every value of t,we compute a newintegral

25-26

�−

=

−=1

0

][][][N

m

mkxmhky

z-1 z-1 z-1…

x[k]

Σ y[k]

h[0] h[1] h[2] h[N-1]

Finite Impulse Response (FIR) FilterFinite Impulse Response (FIR) Filter

• Assuming that h[k] is causal and has finiteduration from k = 0, …,N-1

• Block diagram of an implementation (called afinite impulse response filter)

25-27

z-∆∆∆∆

h + w

b

-xk

yk ek

zk

rk

nk

+

• Minimize mean squared error

E{ek2} whereek=bk-∆ - hk*wk

– Chose length ofbk to shorten length ofhk*wk

• Disadvantages– Does not considerchannel capacity

– Deep notches in equalizer frequency response

Example TimeExample Time--Domain EqualizerDomain Equalizer

25-28

Frequency Domain Equalizer in ADSLFrequency Domain Equalizer in ADSL

• Problem: FFT coefficients (constellation points)have been distorted by the channel.

• Solution: Use Frequency-domain Equalizer (FEQ)to invert the channel.

• Implementation: N/2 single-tap filters withcomplex coefficients.

25-29

Frequency Domain Equalizer in ADSLFrequency Domain Equalizer in ADSL

YN/2-1

Y1

Y0

N/2subchannels

(carriers)

QAMdecoder

0101 Yi

1

~X

12

~−NX

0

~X

FEQ

iii XcY~=

iX~

Yi

Q

I

FEQ

25-30

P/S

QAMdemod

decoder

invertchannel

=frequency

domainequalizer

S/P

quadratureamplitude

modulation(QAM)

encoder

mirrordataand

N-IFFT

addcyclicprefix

P/SD/A +

transmitfilter

N-FFTand

removemirrored

data

S/Premovecyclicprefix

TRANSMITTER

RECEIVER

N/2 subchannels N real samples

N real samplesN/2 subchannels

timedomain

equalizer(FIRfilter)

receivefilter

+A/D

channel

ADSL ModemADSL Modem

Bits

00110

25-31

CrosstalkCrosstalkand Nearand Near--End EchoEnd Echo

f

f f

TX

RX

H cable H

TX

RX

f f

TX

RX

H cable H

TX

RXfNEXT

FEXT

Near-End echo

Near-End echo

25-32

ADSL vs. FEXT, NEXT, NearADSL vs. FEXT, NEXT, Near--end Echoend Echo

• ADSL with Freq. Division Multiplexing - FDM– Near-End Echo filtered out

– Self-NEXT (NEXT from another ADSL) mostly filtered out

– FEXT and NEXT (from another type of DSL) are problems

• ADSL with overlapped spectrum (Echo Cancelled)– Near-End Echo Eliminated using an echo canceller

– FEXT, NEXT and self-NEXT are a problem

– Larger Spectrum available for downstream – higher data rate

US DS DSUS

f f

FDM EC