Interaction of Organic Radicals with Transition...

Post on 28-Jun-2020

4 views 0 download

Transcript of Interaction of Organic Radicals with Transition...

Chris Prier

MacMillan Group Meeting

March 23, 2011

Interaction of Organic Radicals with Transition Metals

IrICOPPh3Cl

Ph3P R•IrII

COPPh3Cl

Ph3PR

IrIIICOPPh3Cl

Ph3PRRX

X

R•

Interaction of Organic Radicals with Transition Metals

oxidation of alkyl radicals

CH3CH2•H2C=CH2

CH3CH2X

CuII

radical mechanism ofoxidative addition !-carbonyl radicals

metal-radical interactionsin asymmetric catalysis coenzyme vitamin B12

L PdII IBr

Ar1•

L PdIII IBr

Ar1 Ph

OMe

FeII

O

Br

EtN

Bn

Ph

O

n-Hex

EtN

Bn

PhCoII

CH2R

Interaction of Organic Radicals with Transition Metals

oxidation of alkyl radicals

CH3CH2•H2C=CH2

CH3CH2X

CuII

radical mechanism ofoxidative addition !-carbonyl radicals

metal-radical interactionsin asymmetric catalysis coenzyme vitamin B12

L PdII IBr

Ar1•

L PdIII IBr

Ar1 Ph

OMe

FeII

O

Br

EtN

Bn

Ph

O

n-Hex

EtN

Bn

PhCoII

CH2R

R• MnXm

addition to the metalR Mn+1Xm

ligand transferR X Mn-1Xm-1

electron transferR± Mn±1Xm

! What are the mechanisms by which an alkyl radical can interact with a transition metal?

Kochi, J. K. Science. 1967, 27, 415-424.

Transition Metals and Organic Radicals

! Different CuII sources show divergent reactivity with respect to ethyl radical

CH3CH2•CuCl2CuSO4

CH3CH2• H2C=CH2 CH3CH2Cl

! Oxidation by CuSO4 is an electron transfer processes (outer-sphere)

Kochi, J. K. Science. 1967, 27, 415-424.

Oxidation of Alkyl Radicals by CuII

CH3CH2•+CuII CH3CH2+CuI +

Cu(OAc)2exclusive product

Cu(OAc)2

t-BuO Me

O

80% 20%

Me Cu(OAc)2 Me

20%

MeOAc

80%

CuII

55% 23% 22%thermodynamic distribution at 30 ºC: 2% 75% 20%

! Stabilities of the oxidation products do not control the selectivity of oxidative elimination

H2C=CH2 + H+

! Radicals which would give more stabilized carbocations give more substitution product

! Oxidation by CuCl2 is a ligand transfer processes (inner-sphere)

Kochi, J. K. Science. 1967, 27, 415-424.

Oxidation of Alkyl Radicals by CuII

CH3CH2•+CuII CH3CH2Cl

! Product ratios match those obtained with atom transfer reagents

CuICl Cl Cl

CuCl2Cl

Cu(OAc)2

! Oxidation of neopentyl radical gives no rearranged products with CuCl2

OAc

exclusive productcarbocation rearrangement products

ClCl

CuCl2:t-BuOCl:

70%70%

30%30%

! Analogy with Taube inorganic ligand transfer process

[CrII(H2O)5]2+

[CoIII(NH3)5Cl]2+[(H2O)5CrII–Cl–CoIII(NH3)5]4+

[CrIII(H2O)5Cl]2+

[CoII(NH3)5]2+

CuIICl ClH3CH2C

! Metal-alkyl bonds are characteristically weak, correlate with degree of steric crowding

Metal-Alkyl Bond Strengths

bond dissociation energy (kcal/mol)2

25201822241917

3741412121

53

SALOPH = N,N'-disalicylidene-o-phenylenediamine, (DH)2 = dimethylglyoxime

(py)(SALOPH)Co–CH2CH2CH3(py)(SALOPH)Co–CH(CH3)2(py)(SALOPH)Co–CH2C(CH3)3(py)(SALOPH)Co–CH2C6H5(PMe2Ph)(DH)2Co–CH(CH3)C6H5(PEtPh2)(DH)2Co–CH(CH3)C6H5(PPh3)(DH)2Co–CH(CH3)C6H5

(CO)5Mn–CH3(CO)5Mn–CF3(CO)5Mn–C6H5(CO)5Mn–CH2C6H5(CO)5Mn–COC6H5

(CO)5Re–CH3

Halpern, J. Inorg. Chim. Acta. 1985, 100, 41-48.Brown, D. L. S.; Connor, J. A.; Skinner, H. A. J. Organomet. Chem. 1974, 81, 403-409.

Connor, J. A. et al. Organometallics. 1982, 1, 1166-1174.

Interaction of Organic Radicals with Transition Metals

oxidation of alkyl radicals

CH3CH2•H2C=CH2

CH3CH2X

CuII

radical mechanism ofoxidative addition !-carbonyl radicals

metal-radical interactionsin asymmetric catalysis coenzyme vitamin B12

L PdII IBr

Ar1•

L PdIII IBr

Ar1 Ph

OMe

FeII

O

Br

EtN

Bn

Ph

O

n-Hex

EtN

Bn

PhCoII

CH2R

Interaction of Organic Radicals with Transition Metals

oxidation of alkyl radicals

CH3CH2•H2C=CH2

CH3CH2X

CuII

radical mechanism ofoxidative addition !-carbonyl radicals

metal-radical interactionsin asymmetric catalysis coenzyme vitamin B12

L PdII IBr

Ar1•

L PdIII IBr

Ar1 Ph

OMe

FeII

O

Br

EtN

Bn

Ph

O

n-Hex

EtN

Bn

PhCoII

CH2R

! Concerted pathway: cis insertion via a three-center, two-electron bond

Hegedus, L. S. Transition Metals in the Synthesis of Complex Molecules. 1999, 2nd ed.

Two-Electron Mechanisms of Oxidative Addition

! SN2-type substitution: highly nucleophilic metal complexes attack primary or secondary halides

L2Pd0

PhBr

L2PdBr

H

PhH

L2PdIIBr

Ph

IrICOPPh3Cl

Ph3PCH3Br

IrCOPPh3Cl

Ph3PCH3

+

Br– IrIII COPPh3Cl

Ph3PCH3

Br

! Radical pathway (two inner sphere one-electron processes)

Tsou, T. T.; Kochi, J. K. J. Am. Chem. Soc. 1979, 101, 6319-6332.

One-Electron Mechanisms of Oxidative Addition

IrI COPPh3Cl

Ph3PIn•

IrII COPPh3Cl

Ph3PIn

IrIIICOPPh3Cl

Ph3PInRX

X

R•

X

Mn

X

Mn+1 Mn+1X–

Mn+2+

X– Mn+2

X

! Electron-transfer mechanism (outer sphere one-electron process, then inner sphere one-electron process)

IrI COPPh3Cl

Ph3P R•IrII CO

PPh3ClPh3P

R

IrIIICOPPh3Cl

Ph3PRRX

X

R•

initiation:

propagation:

Labinger, J. A.; Osborn, J. A.; Coville, N. J. Inorg. Chem. 1980, 19, 3236-3243.

! Concerted pathway: requires retention of configuration

Stereochemical Consequence of Oxidative Addition Pathways

! SN2-type substitution: requires inversion of configuration

! Radical pathways: likely to proceed with loss of stereochemistry

Mn BrR1

R3

M Br

R1

R2 R3

Mn+2R1

R2R3

+

Br– Mn+2R1

R2R3Br

MnBr

R1R2

R3

BrM

R1 R2

R3 Mn+2

Br

R1

R2R3

R2

Mn R1R2

R3

Mn+1

R1 R2

R3Mn+1

R1R2

R3

Br

R1R2

R3

Mn+2

R1 R2

R3Mn+2

R1R2

R3

Br

Br

! Oxidative addition of alkyl halides to an IrI complex proceeds with loss of stereochemistry

Stereochemical Consequence of Oxidative Addition Pathways

IrICOPMe3Cl

Me3PIrI CO

PMe3ClMe3P

1:1 mixture

DPh

Br

FD

PhBr

F

Labinger, J. A.; Osborn, J. A. Inorg. Chem. 1980, 19, 3230-3236.

IrI COPMe3Cl

Me3P

Br

F

PhD

IrI COPMe3Cl

Me3P

Br

F

PhD

! Cross-coupling of endo- and exo-2-norbornane leads to the same exo product

González-Bobes, F.; Fu, G. C. J. Am. Chem. Soc. 2006, 5360-5361.

Br

Br

Ph

Ph

6% NiI26% trans-2-aminocyclohexanol

84%

91%NaHMDS (2 equiv.)isopropanol, 60 ºC

! Cis- and trans-1,2-dichloroethylene give the same isomeric mixture of oxidative addition product

Fitton, P.; McKeon, J. E. Chem. Commun. 1968, 4-6.

! Complete retention of configuration is observed in the oxidative addition to Pd(PPh3)4

Evidence for Radical Chain Process

Cl

Cl

Cl Cl

IrI COPMe3Cl

Me3P

IrIIICOPMe3Cl

Me3P

Cl

Cl

40:60 cis:trans

IrIIICOPMe3Cl

Me3P

Cl

Clor

Labinger, J. A.; Osborn, J. A.; Coville, N. J. Inorg. Chem. 1980, 19, 3236-3243.

Pd(PPh3)4

Cl

Cl

Pd(PPh3)4

Cl Cl

PdIIPPh3Cl

Ph3P

Cl

PdIIPPh3Cl

Ph3P

Cl

! Radical initiators promote the oxidative addition of alkyl halides to IrI complexes

Labinger, J. A.; Osborn, J. A.; Coville, N. J. Inorg. Chem. 1980, 19, 3236-3243.

! Radical inhibitors depress the oxidative addition of alkyl halides to IrI complexes

Evidence for Radical Chain Process

IrI COPMe3Cl

Me3PPh

Br

IrIIICOPMe3Cl

Me3P

Br

Phinitiator

5

noneAIBN

benzoyl peroxide

conversion (%)

after 100 min5

1134

after 46 h5

36100100

F

F

65 ºC

IrI COPR3Cl

R3P

PhBr

IrIIICOPR3Cl

R3P

Br

Ph inhibitor555

noneduroquinone

galvinoxyl

conversion (%)after 5 min

5

421419

F

FCO2Et EtO2C

r.t.

! Rate of reactivity of alkyl halides is consistent with radical process, inconsistent with SN2

Labinger, J. A.; Osborn, J. A.; Coville, N. J. Inorg. Chem. 1980, 19, 3236-3243.

! Trapping of radical intermediates with acrylonitrile

Evidence for Radical Chain Process

IrI COPMe3Cl

Me3PIrIIICO

PMe3ClMe3P

R

X

RX relative reactivity2

1.0 (defined)5.46.8

RX2

n-BuBrs-BuBrt-BuBr

CN

IrICOPMe3Cl

Me3PCN

n

IrIIICOPMe3Cl

Me3Pi-Pr

I

i-PrI

10 equiv.

CN

IrICOPMe3Cl

Me3PCN

n

IrIIICOPMe3Cl

Me3PMe

I

MeI

not observed

! Alkyl iodides bearing tethered alkenes undergo radical cyclization concomitant with oxidative addition

Phapale, V. B.; Buñuel, E.; García-Iglesias, M.; Cárdenas, D. J. Angew. Chem. Int. Ed. 2007, 46, 8790-8795.

Radical Cyclizations in Oxidative Addition

O O

I

BrZn O

O

OO

H

H

O

O

79%

[Ni(py)4Cl2] (10%)(S)-(s-Bu)-Pybox (10%)

THF, 23 ºC

O O O O

H

H

NiII

NiIII I

NiIO O

I

R

R =O

O

L*

NiI*L I

O O

CH2

O O

H

H

NiII

R

L*

O O

H

H

NiIII

R

L*I

! Isopropyl iodide accelerates the Kumada cross-coupling of aryl Grignard reagents

Manolikakes, G.; Knochel, P. Angew. Chem. Int. Ed. 2009, 48, 205-209.

Alkyl Iodide Accelerated Kumada Couplings

MgCl

Br OMe

rate enhancementdue to presence

of i-PrI

conversion after 15 min

8%82%

OMe

L Pd0 L PdI I

Ar1 Br

L PdII IBr

Ar1•

L PdIII IBr

Ar1L PdIII X

Ar2

Ar1

Ar2MgX

Ar1 Ar2 L PdI X

Me Me

! Rate acceleration arises from initiation of radical pathway by isopropyl iodide

PEPPSI (2 mol%)

THF, 0 ºC

Grignard prepared from PhCl and Mg/LiClGrignard prepared from PhI and i-PrMgCl•LiCl

I

MeMe

! Aryl halides bearing an alkene tether undergo radical cyclization

Manolikakes, G.; Knochel, P. Angew. Chem. Int. Ed. 2009, 48, 205-209.

Radical Cyclizations in the Accelerated Kumada Coupling

MgCl

OMe

Br

OMeOMe

additive

nonei-PrI (1.1 equiv.)

80%34%

7%50%

time

60 min5 min

MgCl

Br

OMe

OMe

78%

PEPPSI (2 mol%)

THF, 25 ºC

! No cyclized products are observed when the alkene tether is on the Grignard reagent

PEPPSI (2 mol%)

THF, 25 ºC, 5 minI

i-PrMgCl•LiCl

THF, -20 ºC, 1h

Interaction of Organic Radicals with Transition Metals

oxidation of alkyl radicals

CH3CH2•H2C=CH2

CH3CH2X

CuII

radical mechanism ofoxidative addition !-carbonyl radicals

metal-radical interactionsin asymmetric catalysis coenzyme vitamin B12

L PdII IBr

Ar1•

L PdIII IBr

Ar1 Ph

OMe

FeII

O

Br

EtN

Bn

Ph

O

n-Hex

EtN

Bn

PhCoII

CH2R

Interaction of Organic Radicals with Transition Metals

oxidation of alkyl radicals

CH3CH2•H2C=CH2

CH3CH2X

CuII

radical mechanism ofoxidative addition !-carbonyl radicals

metal-radical interactionsin asymmetric catalysis coenzyme vitamin B12

L PdII IBr

Ar1•

L PdIII IBr

Ar1 Ph

OMe

FeII

O

Br

EtN

Bn

Ph

O

n-Hex

EtN

Bn

PhCoII

CH2R

! Synthesis of !-lactones by reaction of Mn(OAc)3 with olefins

Oxidative Reactions with Manganese(III) Acetate

inner-sphereoxidation

MnIII OMnII

MnIII O

OCH2

Mn(OAc)3•2H2O (2 equiv.) O

O

PhHOAc, KOAc135 ºC, 1 h

proposed intermediate:

" "O

CH2HO

Heiba, E. I.; Dessau, R. M.; Koehl, W.J. J. Am. Chem. Soc. 1968, 90, 5905-5906.Heiba, E. I.; Dessau, R. M.; Rodewald, P. G. J. Am. Chem. Soc. 1974, 96, 7977-7981.

60%

MnIII OMnIII

OO

MnIII O

O

OO

Me

Me

Me MnIII OMnII

MnIII O

OR

! Key mechanistic question: Is the species that adds to the olefin a free or metal-complexed radical?

O

CH2HO

O

HO

styrene

Ph

outer-sphereoxidation

styrene

! No polymerization of styrene observed

Fristad, W. E.; Peterson, J. R.; Ernst, A. B.; Urbi, G. B. Tetrahedron. 1986, 42, 3429-3442.

Evidence Against Intermediacy of Discrete Radicals

no polymerization observed

O

OEtClH2Cno rxn OEt

O

Cl

C6H13C6H13

73%

(Ot-Bu)2

155 ºC

Mn(OAc)3•2H2O

HOAc, Ac2Oreflux

Mn(OAc)3•2H2O

HOAc, Ac2Oreflux

Bush, J. B., Jr.; Finkbeiner, H. J. J. Am. Chem. Soc. 1968, 90, 5903-5905.Allen, J. C.; Cadogan, J. I. G.; Hey, D. H. J. Chem. Soc. 1965, 1918-1932.

! Acetate esters add to olefins upon initiation with (Ot-Bu)2, but not Mn(OAc)3•2H2O

! No dimerization of acetic acid radicals observed

H3C OH

O Mn(OAc)3•2H2O

Ac2O, refluxno alkene

HO

OOH

O

succinic acid not observed

Bush, J. B., Jr.; Finkbeiner, H. J. J. Am. Chem. Soc. 1968, 90, 5903-5905.

! H/D exchange experiments show no rate dependence on the metal

Fristad, W. E.; Peterson, J. R.; Ernst, A. B.; Urbi, G. B. Tetrahedron. 1986, 42, 3429-3442.

Evidence for Metal-Complexed Radical

H3C

O

OH+

D3C

O

OD DH2C

O

OD

! !-lactone formation exceeds total solution H/D exchange

! Results are only consistent with rate-determining enolization of complexed acetate

rateA = rateB

KOAc, reflux

A: 0.25 M Mn(OAc)3•2H2OB: no metal

HOAc-d2

! Rate-determining enolization followed by single-electron oxidation generates metal-bound radical

Fristad, W. E.; Peterson, J. R.; Ernst, A. B.; Urbi, G. B. Tetrahedron. 1986, 42, 3429-3442.

Consensus Mechanism of Manganese(III) Acetate Oxidation

inner-sphereoxidation

MnIII OMnII

MnIII O

OCH2MnIII O

MnIIIO

O

MnIII O

O

OO

Me

Me

Me

MnIII OMnII

MnIII O

OPh

styrene

-H+

enolizationMnIII O

MnII

MnIII O

OCH2

oxidative lactonization

MnIII OMnII

MnIIO

O

Ph

! Mn(OAc)3 initiates radical cyclizations of !-keto esters and 1,3-diketones

Kates, S. A.; Dombroski, M. A.; Snider, B. B. J. Org. Chem. 1990, 55, 2427-2436.

Oxidative Cyclization of !-Dicarbonyls

O

OMe

O

Me

Mn(OAc)3•2H2O (2 equiv.)Cu(OAc)2•H2O (1 equiv.)

HOAc, 50 ºC, 1 h

O

OMe

OO

OMe

O

Cu(OAc)2

! Cu(OAc)2 is used to oxidize the alkyl radical to the alkene

O

OMe

O!-hydride

elimination O

OMe

O

Cu(OAc)

O

OMe

O

Me

71% (mixture of tautomers)

Me

OO

Mn(OAc)3•2H2O (2 equiv.)Cu(OAc)2•H2O (1 equiv.)

HOAc, 25 ºCO

O

Me

48%

O O

OMeMe

O O

OMeMe

Me

OCO2Me

Me

OCO2Me

Me

OCO2Me

(OAc)2CuMe

OCO2Me !-hydride

elimination

! Mn(OAc)3 can initiate radical cascade cyclizations

Zoretic, P. A.; Shen, Z.; Wang, M.; Riberio, A. A. Tetrahedron Lett. 1995, 36, 2925-2928.

Oxidative Radical Cascade Cyclizations

86%

(14% without Cu(OAc)2)

MnIIMn(OAc)3•2H2O (2 equiv.)Cu(OAc)2•H2O (1 equiv.)

HOAc, r.t., 26 h

OCO2Et

Me

MeMe

H

HO

43%

Me MeMn(OAc)3•2H2O (2 equiv.)Cu(OAc)2•H2O (1 equiv.)

HOAc, r.t., 24 hCO2EtH

Dombroski, M. A.; Kates, S. A.; Snider, B. B. J. Am. Chem. Soc. 1990, 112, 2759-2767.

! Baran's Cu(II)-mediated indole-carbonyl coupling

Baran, P. S.; Richter, J. M. J. Am. Chem. Soc. 2004, 126, 7450-7451.Baran, P. S.; Richter, J. M.; Lin, D. W. Angew. Chem. Int. Ed. 2005, 44, 609-612.

Richter, J. M.; Whitefield, B. W.; Maimone, T. J.; Lin, D. W.; Castroviejo, M. P.; Baran, P. S. J. Am. Chem. Soc. 2007, 129, 12857-12869.

Indole Coupling via !-Carbonyl Radicals

O

NH

ONH

2 equiv.

ONH

43%

O

N

O

OMe

NH

Bn

54%, 5:1 d.r.

OH NH

Me

53%, single diastereomer(5 equiv. indole: 77%)

Me

Ph

O

Me

NH

30%

O

O Me

NH

51%

THF-78 ºC to r.t.

LHMDS (3.3 equiv.)Cu(II)2-ethylhexanoate (1.5 equiv.)

! Oxidation of enolate to !-ketoradical enables coupling with copper-coordinated indole

Richter, J. M.; Whitefield, B. W.; Maimone, T. J.; Lin, D. W.; Castroviejo, M. P.; Baran, P. S. J. Am. Chem. Soc. 2007, 129, 12857-12869.

Proposed Mechanism of Indole-Carbonyl Coupling

O

NH

OCuII

N

OCuI

NOCuI

N

Cu0

O NH

THF-78 ºC to r.t.

LHMDS (3.3 equiv.)Cu(II)2-ethylhexanoate (1.5 equiv.)

! Free N-H is required for reactivity under copper conditions

Richter, J. M.; Whitefield, B. W.; Maimone, T. J.; Lin, D. W.; Castroviejo, M. P.; Baran, P. S. J. Am. Chem. Soc. 2007, 129, 12857-12869.

Evidence for Electron Transfer via Copper Enolate

! Reaction proceeds with a known outer-sphere oxidant

no reaction

Fe+

discrete !-carbonyl radical

Me Me

N

SO O

O

N

Me Me

N

SO O

O

N

implicates inner-sphere oxidation via indole-bound copper enolate:

LHMDSCu(II)2-ethylhexanoate

-78 ºC to r.t.

PF6-

LHMDS, NEt3

Me Me

N

SO O

O

N

Me Me

N

SO O

O

N

11%, 4.5:1 d.r.(after benzoylation)

OCuI

NOCuII

N

! Enables the synthesis of 1,4-dicarbonyl compounds via !-carbonyl radicals

Oxidative Enolate Coupling

! Reaction does not proceed via formation of the !-bromoester

O

t-BuOOt-Bu

O

Rathke, M. W.; Lindert, A. J. J. Am. Chem. Soc. 1971, 93, 4605-4606.

t-BuO

OBr

t-BuO

OLi

t-BuO

O

Me

85%

O

t-BuOOt-Bu

O10%

! Proposed to proceed via single-electron oxidation of enolate to !-carbonyl radical

lithium amide baseCuBr2 (2 equiv.)

t-BuO

O

Me t-BuO

OCuII

t-BuO

OCuI

! Heterocoupling can be achieved in the coupling of imides or amides with ketones or esters

Oxidative Enolate Coupling

R1

O

R2 R3

R4

O

R1

O

R2 O

R4

R3

O

O N

O

PhBn

Me

O

Ph

Fe(III): 57%, 1.8:1 d.r.Cu(II): 55%, 1:1.6 d.r.

Fe(acac)3 (2.0 equiv.) orCu(2-ethylhexanoate)2 (2.0 equiv.)

LDA (2.1 equiv.)

THF, -78 ºC to r.t.

O

O N

O

PhBn

O

O

Fe(III): 60%, 2.6:1 d.r.

NMOM

O

1 equiv. 1 equiv.

Me

Me

OO

Fe(III): 73%, 2:1 d.r.

O

O N

O

CO2t-Bu

Phi-Pr

Cu(II): 62%, 1.2:1 d.r.(1.75 equiv. ester)

OBn

Baran, P. S.; DeMartino, M. P. Angew. Chem. Int. Ed. 2006, 45, 7083-7086.DeMartino, M. P.; Chen, K.; Baran, P. S. J. Am. Chem. Soc. 2008, 130, 11546-11560.

! Formation of ketone-iron enolate followed by single-electron oxidation furnishes !-carbonyl radical

Proposed Mechanism of Oxidative Enolate Coupling

O

O N

O

BnPh

MePh

O

O

O N

O

Bn

Ph

Ph

O

Li

LDAFe(III)

Me

FeIII

Ph

OMe

FeII

O

O N

O

Bn

Li

Ph

Me

O

Ph

O

O N

O

BnPh

Me

O

Ph

FeIII FeII

Baran, P. S.; DeMartino, M. P. Angew. Chem. Int. Ed. 2006, 45, 7083-7086.DeMartino, M. P.; Chen, K.; Baran, P. S. J. Am. Chem. Soc. 2008, 130, 11546-11560.

! Fe(III) and Cu(II) show divergent reactivity in cyclopropane radical clock studies

DeMartino, M. P.; Chen, K.; Baran, P. S. J. Am. Chem. Soc. 2008, 130, 11546-11560.

Mechanism of Oxidative Enolate Coupling

O

O N

O

Bn PhPh

MePh

OFe(III) or Cu(II)

LDA (2.1 equiv.)

THF, -78 ºC to r.t.

O

O N

O

Bn

PhPh

Fe(III): traceCu(II): 20% (mixture

of ring-opened products)

O

O N

O

BnPh

Ph

O

Ph

Ph

Fe(III) or Cu(II)LDA (2.1 equiv.)

THF, -78 ºC to r.t.

O

Ph

Ph Ph

Fe(III): traceCu(II): 14%

O

O N

O

Bn

MeMe Fe(III) or Cu(II)LDA (2.1 equiv.)

THF, -78 ºC to r.t.

O

O N

O

Bn

MeMe

Fe(III): 27%Cu(II): 28%

! Fe(III) and Cu(II) promote cyclization with tethered olefins

DeMartino, M. P.; Chen, K.; Baran, P. S. J. Am. Chem. Soc. 2008, 130, 11546-11560.

Mechanism of Oxidative Enolate Coupling

! Extent to which metal enolate behaves like an !-carbonyl radical depends on the identity of the metal

X

O

Y

Mn

X

O

Y

Mn-1•R

•R

X

O

Y

R

X

O

Y

R

DeMartino, M. P.; Chen, K.; Baran, P. S. J. Am. Chem. Soc. 2008, 130, 11546-11560.

Interaction of Organic Radicals with Transition Metals

oxidation of alkyl radicals

CH3CH2•H2C=CH2

CH3CH2X

CuII

radical mechanism ofoxidative addition !-carbonyl radicals

metal-radical interactionsin asymmetric catalysis coenzyme vitamin B12

L PdII IBr

Ar1•

L PdIII IBr

Ar1 Ph

OMe

FeII

O

Br

EtN

Bn

Ph

O

n-Hex

EtN

Bn

PhCoII

CH2R

Interaction of Organic Radicals with Transition Metals

oxidation of alkyl radicals

CH3CH2•H2C=CH2

CH3CH2X

CuII

radical mechanism ofoxidative addition !-carbonyl radicals

metal-radical interactionsin asymmetric catalysis coenzyme vitamin B12

L PdII IBr

Ar1•

L PdIII IBr

Ar1 Ph

OMe

FeII

O

Br

EtN

Bn

Ph

O

n-Hex

EtN

Bn

PhCoII

CH2R

! Racemic starting material is converted to single enantiomer product via radical intermediate

Asymmetric Negishi Coupling of !-Bromoamides

O

Br

EtN

Bn

Ph

n-Hex ZnBr

O

n-Hex

EtN

Bn

Ph

90%, 95% eeracemic !-bromoamide

OEt

NBn

Ph

achiral radical intermediate

Fischer, C. F.; Fu, G. C. J. Am. Chem. Soc. 2005, 127, 4594-4595.

NiIO

EtN

Bn

Ph NiII

OEt

NBn

Ph NiIII

X

10% NiCl2•glyme13% (R)-(i-Pr)-Pybox

DMI/THF (7:1)0 ºC, 12 h

X

XX

OEt

NBn

Ph NiIII

Xn-Hex

n-Hex ZnBr

1.3 equiv.

NiII

NiIII Br

! Wide range of asymmetric cross couplings of racemic secondary alkyl halides has been developed

Asymmetric Cross Coupling of Alkyl Halides

Ph

O

Ph

Me

!-bromoketones

J. Am. Chem. Soc. 2005, 127, 10482-10483.

n-HexMe

89%, 96% ee81%, 92%

Angew. Chem. Int. Ed. 2009, 48, 154-156.J. Am. Chem. Soc. 2010, 132, 1264-1266.

Phn-Bu

Ph

84%, 94% ee

homobenzylic halides

J. Am. Chem. Soc. 2008, 130, 6694-6695.

secondary allylic chlorides

Me Me

n-Hex

95%, 87% ee

J. Am. Chem. Soc. 2008, 130, 2756-2757.

OMe

n-Hex

acylated halohydrins

N

OBn

Ph

80%, 94% ee

J. Am. Chem. Soc. 2010, 132, 11908-11909.

BHTO

OEt

Ph

!-bromoesters

80%, 99% ee

J. Am. Chem. Soc. 2008, 130, 3302-3303.

secondary benzylic halides

! A copper/chiral diamine catalyst controls the dimerization of 2-naphthol derivatives

Enantioselective Oxidative Biaryl Coupling

OH

CO2Me

N

N HCuIOMeO

O

N

N HCuIOMeO

O

OMe

OOH

H

OH

CO2Me

OH

CO2MeN

N HH

10 mol%

CuI (10 mol%), O2MeCN, 48 h, 40 ºC

enolization and catalyst release

HH

85%, 93% ee

N

N H

H

CuIIHO I

Li, X.; Yang, J.; Kozlowski, M. C. Org. Lett. 2001, 3, 1137-1140.Hewgley, J. B.; Stahl, S. S.; Kozlowski, M. C. J. Am. Chem. Soc. 2008, 130, 12232-12233.

! Iron(salan)-catalyzed process enables oxidative biaryl heterocoupling

Egami, H.; Matsumoto, K.; Oguma, T.; Kunisu, T.; Katsuki, T. J. Am. Chem. Soc. 2010, 132, 13633-13635.

Enantioselective Oxidative Biaryl Coupling

(salan)FeIII

HO

FeIII(salan)OH

HO

O(salan)FeIII

O2

O2•–

O(salan)FeIV

+

O(salan)FeIII

HO+

HO

HOHO

X = H, Y = Br: 52%, 89% eeX = Ph, Y = CO2Me: 70%, 90%eeX = Ph, Y = Ac: 65%, 88%ee

X

X

X

X

Y

Y Y

HO

XO2

•–

H2O2

Interaction of Organic Radicals with Transition Metals

oxidation of alkyl radicals

CH3CH2•H2C=CH2

CH3CH2X

CuII

radical mechanism ofoxidative addition !-carbonyl radicals

metal-radical interactionsin asymmetric catalysis coenzyme vitamin B12

L PdII IBr

Ar1•

L PdIII IBr

Ar1 Ph

OMe

FeII

O

Br

EtN

Bn

Ph

O

n-Hex

EtN

Bn

PhCoII

CH2R

Interaction of Organic Radicals with Transition Metals

oxidation of alkyl radicals

CH3CH2•H2C=CH2

CH3CH2X

CuII

radical mechanism ofoxidative addition !-carbonyl radicals

metal-radical interactionsin asymmetric catalysis coenzyme vitamin B12

L PdII IBr

Ar1•

L PdIII IBr

Ar1 Ph

OMe

FeII

O

Br

EtN

Bn

Ph

O

n-Hex

EtN

Bn

PhCoII

CH2R

! Homolysis of cobalt-carbon bond generates carbon-centered radical capable of performing catalysis

Buckel, W.; Golding, B. T. Annu. Rev. Microbiol. 2006, 60, 27-49.

Coenzyme Vitamin B12 is a Source of Radicals

N N

NN

Me

Co

Me

H2NO

H

MeMe

H2N

O

H

H2N

OH

NH

O

OP

OOO

MeO

N

N

Me

Me

H

OHHH

Me

HOH

MeNH2

OH

NH2

O

O

NH2

H

MeMe

O

OH

OH

N

N

N

N

NH2

CoIII

CH2R

CoII

CH2R

BDE = 30 kcal/mol

5'-deoxyadenosyl radical

"latent radical reservoir"

! Glutamate mutase converts (S)-glutamate to (2S,3S)-3-methylaspartate

Buckel, W.; Golding, B. T. Annu. Rev. Microbiol. 2006, 60, 27-49.

Catalysis by Coenzyme Vitamin B12

CO2--O2C

NH4+

CO2-

-O2C

NH4+

CH2

CoIII

CH2

Ado

CoII

CH2

Ado

CH3

AdoCO2

--O2C

NH4+

CO2-

-O2C

NH4+

CH3

-O2C

NH3+

CO2-

glycyl radical

(S)-glutamate(2S,3S)-3-methylaspartate

! Methylmalonyl CoA mutase converts L-methylmalonyl CoA to succinyl CoA

Banerjee, R.; Ragsdale, S. W. Annu. Rev. Biochem. 2003, 72, 209-247.

Catalysis by Coenzyme Vitamin B12

CoIII

CH2

Ado

CoII

S

OCoA

O

O

HHH

S

OCoA

O

O

H H

O

OS

OCoA

O

OS

OCoA

succinyl CoAL-methylmalonyl CoA

CH2

Ado

CH3

Ado

O

O O

SCoA

! D-ornithine aminomutase converts D-ornithine to (2R,4S)-2,4-diaminopentanoic acid

Catalysis by Coenzyme Vitamin B12

CoIII

CH2

Ado

CoII

2,4-diaminopentanoic acidD-ornithine

CH2

Ado

CH3

Ado

CO2-

NH2

NCO2

-

NH2

Me

N

CO2-

NH2

N

R

CO2-

NH2N

R

R = pyridoxal phosphate

CO2-

NH2

H2C

N

R

R

R

Banerjee, R.; Ragsdale, S. W. Annu. Rev. Biochem. 2003, 72, 209-247.Chen, H.-P.; Wu, S.-H.; Lin, Y.-L.; Chen, C.-M. J. Biol. Chem. 2001, 276, 44744-44750.

Interaction of Organic Radicals with Transition Metals

oxidation of alkyl radicals

CH3CH2•H2C=CH2

CH3CH2X

CuII

radical mechanism ofoxidative addition !-carbonyl radicals

metal-radical interactionsin asymmetric catalysis coenzyme vitamin B12

L PdII IBr

Ar1•

L PdIII IBr

Ar1 Ph

OMe

FeII

O

Br

EtN

Bn

Ph

O

n-Hex

EtN

Bn

PhCoII

CH2R