Impurity effects in high TC superconductorsnano05/Talks/Bobroff.pdf · • Impurity in more «...

Post on 29-Oct-2020

5 views 0 download

Transcript of Impurity effects in high TC superconductorsnano05/Talks/Bobroff.pdf · • Impurity in more «...

J. Bobroff, S. Ouazi, H. Alloul, P. Mendels, N. BlanchardLaboratoire de Physique des Solides, Université Paris XI, Orsay

G. Collin J.F. Marucco, V. Guillen D. ColsonLLB, CEA-Saclay LEMHE, Université Paris XI SPEC, Saclay

Impurity effects in high TC superconductors

High TC cuprates

metallicity + correlations + exotic superconductivity

doping

T

Antiferromagnetism Superconductivity

pseudogap

• Impurity in more « simple » systems• in a metal• in a BCS superconductor

• in a correlated insulator

Impurity effects in cuprates

•Impurity in High TC cuprates • in the metallic « normal » state

• macroscopic properties• local magnetism

in underdoped state with increasing doping

• in the superconducting state• macroscopic properties• density of states• magnetism

A magnetic impurity in a metal

• RKKY spin polarization of the conduction carriers

• Kondo effect

0 100 200

χ

TemperatureMadhavan et al.

CuFe AuCo

A magnetic impurity in an isotropic BCS superconductor

• Decrease of TC only if it is magnetic (Abrikosov, Gork’ov)

• Possible local bond states

dI/dV(10-7Ω-1)

NbMn or NbAg

Yazdani et al.

14580 14600 14620 14640 146600.0

0.2

0.4

0.6

0.8

1.0

ν (kHz)

Y2 Ba Ni98% Zn2% O5 T = 200 K

Inte

nsité

(uni

tés a

rbitr

aire

s)

pur

Zn 2%

An impurity in an insulating correlated system

Ni Ni Ni Ni Ni Ni Ni Zn Ni Ni Ni Ni Ni

impurity

NMR spectrum

example : Y2BaNiO5 as a spin 1 Ni chain with Haldane gap

0 2 4 6 8

-4

0

4

Zn QMC computation

δ< S

zi >/<

Sz> u

position

T=100 K

< Si.Sj > ~ e-r/ξ<SZ(i)> ~ e-r/ξ(T) / T

Das et al., 2004Tedoldi et al., 2000

Cu

J’

Zn

Cu S=1/2

J=260 K

JJ’

J’ = 0.1 à 0.2 J

An impurity in an insulating correlated system

Some other low dimension spin systems

AF orderGapξ<3

2-leg ladder

AF order

Gap

Dimerisation

Spin-Peierls Chain

No orderξ~1/TSpin ½ Chain

AF ?Gapξ < 6

Spin 1 Chain

Common mechanism : breaking of a singlet

Non magnetic impurity effects in cuprates

The normal state

doping

T

Antiferromagnetism Superconductivity

pseudogap

Why choosing YBaCuO ?

YBaCuO7 92 12 kHz

Impurity effects on doping and pseudogap

0 100 200 300 400 5000.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

pure Zn : xplane = 3% Zn : xplane = 6 %

Ks (%

)

T (K)

YBaCuO6.6

• No effect on doping• No effect on pseudogap

• Effect on resistivity :

Zn : strong scattering center Ni : weaker

•Effect on macroscopic susceptibility :

Zn induces an effective paramagnetic moment S<1/2which decreases with increasing dopingNi induces a moment ≠ S=1 (Mendels, 1994,1999; Zagoulaiev, 1995 )

Impurity effects on macroscopic properties

(Chien, 1991)

100 150 200 250 300 350

0

-100

-200

-300

2èmes voisins

raie centrale

1ers voisins

89K

(ppm

)

T (K)

89Y

100 200 300 4000

200

400

600

800

7 K (p

pm)

T (K)

x = 0.85 % / plane x = 1.8 % / plane

7Li

100 200 3000

20

40

T (K)

17Δν

(kH

z)

17O

Nonmagnetic Impurity in Pseudogap regime

Alloul,91;Walstedt,93;Mahajan,94; Williams,95; Ishida,97; JB,97,99; Julien,2000; Itoh,2003; Ouazi, 2004

0 2 4 6 80.000

0.002

0.004

0.006

Distance to the impurity (unit cells)

Spatial dependence Extension

⟨Sz ( r

) ⟩

T = 85K

Ouazi, 2004

Multi-nuclei quantitative analysis of the induced staggered polarization

100 1500

2

4

6

8

10

ξ (c

ell u

nits

)

Temperature (K)

ξimpurity

• Analogy with spin chains• Theoreticall justifications :

t-J (Poilblanc)RVB (Khaliullin, Gabay, Nagaosa & Lee)

Nonmagnetic Impurity in Pseudogap regime

Spatial dependence

⟨Sz ( r

) ⟩

T = 85K

Effect of hole doping on the induced polarization

0 2 4 6 80.000

0.002

0.004

0.006

Distance to the impurity (unit cells)

100 1500

1

2

3

4

5

6

7

ξ imp (u

nit c

ells)

Température (K)

dopage

• persistence of corrélations at optimal doping

NAFL, SCR (Bulut, Ohashi)

Extension

dopage

100 200 300 400

200

300

400

YBa2Cu3O6.97

YBa2Cu3O6.6

7 K (p

pm)

T (K)

0

400

800 x = 0.85 % / plane x = 1.8 % / plane

6.4 6.6 6.8 7.0 7.20

50

100

150

200

250

Tem

pera

ture

(K)

oxygen doping

0

5

10

C (M

Hz.

K)

Fit inC/(T+Θ)

Susceptibility on 1st near neighbor Cu C

Θ

Effect of hole doping on the induced polarization

JB, 1999

Impurity effects in cuprates

The superconducting state

doping

T

Antiferromagnetism Superconductivity

pseudogap

• Effect on TC :

only dependent on scattering potential (d-wave)

(Rullier-Albenque, 2000)

• Effect on penetration depth :

λ increases with impurity content,ns decreases with impurity content (Bonn, 1993;Bernhard, 1996)

Impurity effects in the superconducting state

Pan, Nature 2000 Hudson, Nature 2001

Impurity effects in the superconducting state

Bi2212 + Zn T = 4.2 K

Sidis, 1996

purZn 2%

Effect on local Density Of States

Effect on magneticresponse χ’’(QAF,ω)

close to Zn

far from Zn

500

1000

Li 1% Li 2%

T C1%T C

2%

Y Ba2Cu3O 6.97

7 K (p

pm)

1000

2000

3000

T C1%

Y Ba2C u3O 6.67 K

(ppm

)

0 40 80 120

400

600

T (K )

T C1%

Y Ba2Cu3O 7 Ca20%

7 K (p

pm)

JB, 2001

Impurity effects in the superconducting stateMagnetic effect on 1st near neighbor Cu of non magnetic Li

40350 40400 40450 40500 405500.0

0.5

1.0

xp=0 %

xp=6%xp=3%

xp=1.5%

Inte

nsity

(arb

itrar

y un

its)

ν (kHz)

Impurity effects in the superconducting state

Induced polarization by non Magnetic Zn or magnetic Ni

In-plane 17O NMR in YBaCuO7 (optimal doping) with Zn at T=10K

Ouazi et al., 2005

Impurity effects in the superconducting state

Induced polarization by non Magnetic Zn or magnetic Ni

In-plane 17O NMR in YBaCuO7 (optimal doping) with Zn at H = 7 Tesla

0 1 2 3 4 5 6 70

50

100

150

200

250

Zn in-plane concentration xP (%)

17O

full

wid

th a

t hal

f max

imum

(kH

z) field-independent contribution field-dependent contribution μSR vortex lattice field distribution

0 20 40

0

1000

2000

Temperature (K)

Zn : 1.5 %Zn : 3 %Zn : 6 %Ni : 2.25 %

ΔνH -

ΔνL (p

pm)

0 10 20 30 40 50 1000

1000

2000 Zn : 1.5 %Zn : 3 %Zn : 6 %Ni : 2.25 %

Temperature (K)

ΔνL (p

pm)

4 0 3 5 0 4 0 4 0 0 4 0 4 5 0 4 0 5 0 0 4 0 5 5 0

0 .5

1 .0

x p = 3 %

Inte

nsity

(arb

itrar

y un

its)

ν (k H z )

ΔνL ΔνH

ΔνH - ΔνLΔνL

Induced polarization by non Magnetic Zn or magnetic Ni below TC

0 10 20 30 40 50 1000

1000

2000 Zn : 1.5 %Zn : 3 %Zn : 6 %Ni : 2.25 %

Temperature (K)

Δν L (p

pm)

Induced polarization by non Magnetic Zn or magnetic Ni below TC

ΔνL

Staggered magnetization survives below TC for Zn and Ni

• Zn : no T-dependence – saturation of ξ ∼ 3 cells• Ni : Curie-Weiss T-dependence – local moment on Ni in the Ni case at least, coexistence between superconductivity and staggered magnetism

xp=3%

ΔνL ΔνH

Induced polarization by non Magnetic Zn or magnetic Ni below TC

New low temperature asymetry for Zn, not for Ni

0 20 40

0

1000

2000

Temperature (K)

Zn : 1.5 %Zn : 3 %Zn : 6 %Ni : 2.25 %

ΔνH -

ΔνL (p

pm)

ΔνH - ΔνL

Ouazi et al., 2005

• Local Space-Varying Density of States effect near EF

• Confirmation of STM measurements, in YBaCuO bulk

• T-dependence : sharp decrease when increasing T

• BCS + unitary scattering (Hirschfeld, Balatsky, Salkola, Flatté ...)

• RPA (Ohashi)

• t-J + d-wave superconductivity (Wang & Lee)

• Kondo (Povkolnikov, Vojta, Sachdev)

Some models for an impurity in the superconducting state

Normal state of cuprates : • Pseudogap analogous to low dimension

insulating spin systems : strong correlations• Optimal doping : still some correlations• Quantitative estimate of the polarization :

strong constraint for any microscopic model

Superconducting state : • Many features typical of an anisotropic BCS

superconductivity, especially DOS effects• Zn and Ni Induced moments very similar to

normal state• Coexistence of staggered moments and

superconductivity (Ni case)

Conclusions