High Mountain Water Cerenkov Array in Mexico to detect Extensive Air Showers (HAWC) Humberto Salazar...

Post on 14-Dec-2015

235 views 1 download

Tags:

Transcript of High Mountain Water Cerenkov Array in Mexico to detect Extensive Air Showers (HAWC) Humberto Salazar...

High Mountain Water Cerenkov Array in Mexico to detect Extensive

Air Showers (HAWC)

Humberto Salazar IBUAP, Puebla & INAOE

VII SILAFAE Bariloche, January 19, 2009

HAWC observatory with its wide field of view of ~ 2 steradians and nearly 100% duty factor, will enable new observations of the TeV sky.HAWC sensitivity at <1TeV is sufficient to detect flaring active galactic nuclei and search for the predicted prompt emission from gamma-ray bursts.

Outline

Gamma ray Observatories

Milagro: The first wide angle gamma ray Ovservatory

Hawc: Design, status and perspectives

.

High Energy Particle Astrophysics

• What do we know?–Nature accelerates

particles to >1020 eV–Gamma-ray sources

accelerate particles to >1014 eV

• What do we want to know?–What astrophysical sources

accelerate particles? –How do astrophysical

sources accelerate particles?

–What new high energy physics can we learn from astrophysics?

Producing Gamma Rays: Astrophysical Particle Accelerators

HST Image of M87 (1994)

Black Hole producing relativistic jet of particles

Binary Neutron Star Coalescing

Artist Conception of Short GRBs

Spinning Neutron Star powering a relativistic wind

Massive Star Collapsing into a Black Hole

SuperComputer Calculation

Chandra Image of Crab

HESS TeV+ x-ray

TeV image of Vela Jr. Supernova Remnant

1509 fotones >10 GeV

Space based ObservatoriesSpace based Observatories

Third EGRET Catalog

Radio cuasares y objetos Bl LacFuentes EGRET no identificadas

PulsaresLMCRáfaga solar

Crab pulsar Radio

Crab nebula

Supernova remanent, 1054.

VisibleRayos X

150 meters

Atmospheric interactions High energy rays induce

atmospheric electromagneticcascades

Cosmic rays induce hadronic cascades

Charge particles generate cerenkov radiation in air (or in water )

Cherenkov radiation

Complementary detectors for TeV photons

Atmospheric Cerenkov telescopes Surface detectors

Eenergíy 0.05-50 TeVÁrea > 104 m2

Hadron rejection > 99%Angular resolutión 0.05o

Energy resolution ~15%Aperture 0.003 srDuty Cycle 10%

Energy 0.1-100 TeVÁrea > 104 m2

Hadron rejection > 95%Angular resolution 0.3o - 0.7o

Energy resolution ~50%Aperture > 2 srDuty Cycle > 90%

High resolution spectraDetailed studiesExact locationDeep scanning of the sky (limited regions)

Homogéneous and full sky scanningExtended sourcesGRBs blazaresMulti-wavelenght observations

Atmospheric Cherenkov Telescopes

Since 1960's

Hadron / Photon Discrimination ( “imaging”)

(Crab nebula @ 0.7 TeV

- Weekes et al. 1989)

Whipple @ Mt Hopkins

Whipple: imaging Hegra: Stereo HESS [ Veritas]: Telescope

array (~Whipple) MAGIC: 17m antenna low

threshold ( 25 GeV!): I+II(2003)

New Atmospheric Cherenkov Telescopes

CTA + AGIS: Cherenkov Telescope arrays

Hinton, rapporteur ICRC 2007

Water Cherenkov detector (Milagro)

• Detect cascade particles at ground– Electrons and muons (Cherenkov

radiation) – e Cherenkov radiation

• Large area and altitude

• Wide field of view (45º zenith)

• ~24 hrs / day

(1)Department of Physics, University of Wisconsin

(2)Current Address: Department of Physics, University of Utah

(3)Santa Crux Institute for Particle Physics, University of California, Santa Cruz

(4)Current address: Max-Plank-Institute fur Kernphysik

(5)Department of Physics, University of Maryland

(6)Los Alamos National Laboratory

(7)Department of Physics and Astronomy, George Mason University

(8)Department of Physics, New York University

(9)Department of Physics and Astronomy, Michigan State University

(10)Current address: NASA Goddard Space Flight Center

(11)Current address: Massachusetts Institute of Technology

(12)Department of Physics, University of New Hampshire

(13)Department of Physics and Astronomy, University of California, Irvine

D. Berley,5 E. Blaufuss5, D.G. Coyne,3 T. DeYoung,3,5

B.L. Dingus,6 R.W. Ellsworth,7

J.A. Goodman5,

C.P. Lansdell,5 J.T. Linnemann,9 J.E. McEnery,1,10 A.I. Mincer,8 M.F. Morales,3,11

P. Nemethy,8 D. Noyes,5 J.M. Ryan,12 F.W. Samuelson,6 P.M. Saz Parkinson,3

A. Shoup,13 G. Sinnis,6 A.J. Smith,5 G.W. Sullivan,5 D.A. Williams,3

X.W. Xu6 and G.B. Yodh13

MILAGRO: Water Cherenkov Detector 50m 80 m at 2850m

Milagro

8 meters

e

80 meters

50 meters

• First water Cherenkov detector (gammas)

• Monitoring at TeV's• 2600m masl• 898 detectors

– 450(t)/273(b) pool– 175 Water tanks

(outriggers)• 4000 m2 / 4.0x104 m2 • 2-12 TeV Energy • 1700 Hz event rate• 0.5o-1.4o angular resolution• 95% hadron rejection

Air Shower Layer

Hadron/Muon layer

2m

8" PMTs

Light-tight Cover

MILAGRO detector

Operating since 1999 untill 2008

CrabNebula

Mrk 421

Cygnus Region

Mrk 4217 years data: Jul 2000 - May 2007

Average flux 67% of Crab

Milagro - E

vents/day

AS

M F

lux cts/s

MJD - 500001/1/2000 1/1/2001 1/1/2002 1/1/2003 1/1/2004 1/1/2005 1/1/2006 1/1/2007

May-Jul 2005

Exces 5 during low X ray activity phase

Smith et al. ICRC 2007

HAWC

Scientific case• Deep scanning of 2/3

of the Sky • Galactic plane

– Cygnus region – Galactic center

• Diffuse sources and supernova remanents

• Quasars• Ray Burst• Solar flares• Dark matter search

Requirements• Dimensions:

150m 150m 4.8m 100,000 m3 water

• Light tight• Site 4000masl

– Sierra Negra

• 10 years operation

15xSensitivity of Milagro

HAWC Collaboration

HAWC-MX• INAOE• UNAM:

– Instituto de Astronomía– Instituto de Física– Instituto de Geofísica– Instituto de Ciencias Nucleares– Centro Geociencias (*)– DGSCA

• Benemérita Univ. Autónoma Puebla• Universidad de Guanajuato• CINVESTAV• Universidad Michoacana SNH• UAM Iztapalapa (*)• Universidad Autónoma de Chiapas• [Universidad de Guadalajara]

HAWC-US• Maryland University• U. California, Irvine• U. California, Santa Cruz• Michigan State University• George Mason Univ.• Los Alamos National Laboratory• University of New Hampshire• Penn. State University• University of Utah • University of New Mexico• NASA/GSFC

+ Universita di Torino, Italia+ IAFE & Balseiro Bariloche, Argentina

HAWC site

Closer to equator: sur= 4 cos(lat) sin() 4(2/3) - 40% overlap with HESS (Galactic plane) - 90% IceCube overlap - 100% overlap with Whipple Strip Survey + VERITAS Cygnus SurveyCrab @ 3º zenithGalactic center @ 48o

HAWC & IceCube

• HAWC y IceCube same energy range

• Hadronic Cascades similar fluxes of photons and neutrinos HAWC catalog at TeV candidates for IceCube.

• Alert for transient phenomena (GRB), and flares to search neutrinos with Ice Cube

El sitio de HAWC

Latitud: 18º59’44”Longitud: 97º18’38”Altura: 4098m

. 5610m

. 4580m

. 4km

1 km

Camino, electricidad e Internet del GTM

GTM

900 opaque tanks5m diammeter 4.3m Height

150m x 150m (78% cov.)

Reuse of Milagro PMTs & FE electronics

Detecto design

Milagro:450 PMT (25x18) capa superficie (1.4m)273 PMT (19x13) capa profunda (5.5m)175 PMT outriggers

Área Instrumentada: ~40,000m2

Separación PMTs: 2.8mÁrea superficie: 3500m2

Área profunda:2200m2

HAWC:900 PMTs (30x30)Separación 5.0mCapa única a profundidad 4m

Área instrumentada: 22,500m2

Separación PMTs: 5.0mÁrea superficie: 22,500m2

Área profunda:22,500m2

HAWCMilagro

Tanks option• Cheap & modular

– Data adquisition since R&D phase – Water filling ~5 years

• As sensitive as Milagro with ¼ of instrumentation.

• Expandible at least two times more

Muon - adelgazado 1/50

100 MeV - adelgazado 1/200

Shower

plan

e

Shower particles

Cherenkov Photons

Steel Pipe with Bag Liner

• Steel pipe can be fabricated on the site up to 7.3m(24’) diameter

• Top Area of 7.3 m dia is equal to that of 4(2) tanks of 3.6(5)m dia

• 4.5m high pipe

Hadron rejection /hadrón• Rejection parameter /hadrón: C = nHit/cxPE

– nHit = detector hits– cxPE = (PEs) >30m from the core

Gam

ma

sPro

ton

s

C = 12.0 C = 16.3 C = 7.5 C = 9.7

C = 0.6 C = 0.6 C = 3.2 C = 1.6

http://umdgrb.umd.edu/hawc/ghsep.php

Sky scanHAWC survey vs HESS y VERITAS .

HAWC México (19ON). HESS & Veritas Sensitivity for point sources (red) and extended 0.25O (green).

Blazar Monitoring• HAWC can measure AGNs variability and gives alerts.• AGN within ~ 3 sr will be observedr ~ 5 hrs / day.• HAWCobservations will be continous, without any interruptions.

• Sensitivity 5 HAWC is (10,1,0.1) Crab in (3 min, 5 hr, 1/3 año)

Observations of Mrk421 with Cherenkov telescopes

1 month

HESS J1616-508

0.2 Crab @ 1 TeV =-2.3

Highest energy ~20 TeV

Simulated HAWC data for 1 year with 40 TeV exponential cutoff

Dark matter particles anhilation: • Neutralino WIMP, fromSUSY • 50 GeV< m< ~ TeV

• HAWC mapping 3 sr homogeneous exposure • — Galactic halo, close group of galaxies (dwarf),

cumuls...

• HAWC Galactico center monitoring

Dark Matter search

q

q ... ... Z lines?

Conclusions• Milagro has demonstrated success of the water

Cherenkov technique• Discovery of TeV emission from the Galactic plane• Image of TeV emission from the Cygnus region• 7 New Candidate TeV Sources

• Future Plan is HAWC • Building on expertise with Milagro• Design improvements in Size, Altitude, Curtains . . . • >10x Milagro sensitivity

• HAWC is Synergistic Component of Particle Astrophysics Portfolio

• Gamma-rays point back to astrophysical accelerator• Identify which of GLASTs 1000s of sources extend to TeV

energies and monitoring these sources daily• Determine targets for the Atmospheric Cherenkov Telescopes

to use their enhanced angular and energy resolution• Improve IceCube sensitivity by identifying flaring sources