Health Informatics for Hospital Executives

Post on 29-May-2015

2.699 views 4 download

Tags:

description

A presentation in February 2011 presented at the Ramathibodi Hospital Administration School, Faculty of Medicine Ramathibodi Hospital, Mahidol University in Bangkok, Thailand. Presentation partly in English and partly in Thai.

Transcript of Health Informatics for Hospital Executives

Health Informatics for Hospital Executives

N Th A t MD MSNawanan Theera-Ampornpunt, MD, MS

Feb 14, 2011Ramathibodi Hospital Administration School

SlideShare.net/Nawanan

A Few Words About MeA Few Words About Me...

2003 D f M di i (1 Cl H )2003 Doctor of Medicine (1st-Class Honors) Ramathibodi

2009 M.S. (Health Informatics) University of Minnesota

Currently• Ph.D. Candidate (Health Informatics) University of Minnesota( ) y

• Medical Systems Analyst, Health Informatics Division, Ramathibodi

Contacts@Nawanan @ThaiHealthIT@ @ranta@mahidol.ac.thSlideShare.net/Nawanan

2

www.tc.umn.edu/~theer002groups.google.com/group/ThaiHealthIT

Outline

• Healthcare & Health IT• Health IT Applications

H lth I f ti A A Fi ld• Health Informatics As A Field• IT Management

3

H l h &Healthcare & Health ITHealth IT

4

Manufacturinga u actu g

5 Image Source: Guardian.co.uk

Bankinga g

6 Image Source: Cablephet.com

Healthcareea t ca e

7 ER - Image Source: nj.com

Why Healthcare Isn’t Like Any Others?y y

• Life-or-Death• Many & varied stakeholders• Strong professional values• Strong professional values• Evolving standards of care• Fragmented, poorly-coordinated

systemssystems• Large, ever-growing & changing

body of knowledge• High volume low resources

8

High volume, low resources, little time

Why Healthcare Isn’t Like Any Others?y y

• Large variations & contextual dependenceLarge variations & contextual dependence

Input Process OutputInput Process Output

Patient Decision BiologicalPatient Presentation

Decision-Making

Biological Responses

9

But...Are We That Different?

Banking

Input Process Output

Transfer

Location A Location BValue-Add

- SecurityConvenience

Location A Location B

10

- Convenience- Customer Service

But...Are We That Different?

Manufacturing

Input Process Output

AssemblingRaw FinishedAssemblingRaw Materials

Finished Goods

Value-Add- Innovation

11

- Design- QC

But...Are We That Different?

Healthcare

Input Process Output

Patient CareSick Patient Well Patient

Value-Add- Technology & medications- Clinical knowledge & skills

12

- Quality of care; process improvement- Information

Information is Everywhereo at o s e y e e

13

Various Forms of Health IT

Hospital Information System (HIS) Computerized Provider Order Entry (CPOE)

Electronic Health

Records Picture Archiving and

14

Records (EHRs)

gCommunication System

(PACS)

Still Many Other Forms of Health IT

Health Information Exchange (HIE)

m Health

g ( )

m-Health

Biosurveillance

Personal Health Records (PHRs)

Telemedicine &

15

Information Retrieval Telehealth

Images from Apple Inc., Geekzone.co.nz, Google, PubMed.gov, and American Telecare, I

Why Adopting Health IT?

“To Computerize”“To Go paperless” To ComputerizeTo Go paperless

“Digital Hospital”“To Get a HIS”

Digital Hospital

“T H EMR ”“To Modernize”

“To Have EMRs”

“To Share data”

16

To Share data

Some QuotesQ

• “Don’t implement technology just for• Don t implement technology just for technology’s sake.”

• “Don’t make use of excellent technology. Make excellent use of technology ”Make excellent use of technology.(Tangwongsan, Supachai. Personal communication, 2005.)

• “Health care IT is not a panacea for all• Health care IT is not a panacea for all that ails medicine.” (Hersh, 2004)

17

Health IT: What’s In A Word?

Health Goal

Information Value-AddInformationT h l

Value-Add

Technology Tools

18

Dimensions of Quality Healthcarey

Safety• Safety• TimelinessTimeliness• Effectiveness• Efficiency

E it• Equity• Patient-centerednessPatient centeredness

19 (IOM, 2001)

Value of Health ITa ue o ea t

Guideline adherence• Guideline adherence• Better documentation• Practitioner decision making

for process of care• Medication safetyMedication safety• Patient surveillance &

monitoring• Patient education/reminder

20

• Patient education/reminder

Fundamental Theorem of Informatics

21(Friedman, 2009)(Friedman, 2009)

Is There A Role for Health IT?

22 (IOM, 2000)

Landmark IOM Reportsp

23

(IOM, 2001)(IOM, 2000)

Landmark IOM Reports: Summaryp y

• Humans are not perfect and areHumans are not perfect and are bound to make errors

Hi hli ht bl i th U S• Highlight problems in the U.S. health care system that

t ti ll t ib t tsystematically contributes to medical errors and poor quality

• Recommends reform that would change how health care works and ghow technology innovations can help improve quality/safety

24

p p q y y

Why We Need Health ITWhy We Need Health IT• Health care is very complexHealth care is very complex

(and inefficient)• Health care is information rich• Health care is information-rich• Quality of care depends on timely

il bilit & litavailability & quality of information

• Clinical knowledge body is too large• Short time during a visitg• Practice guidelines are put

“on-the-shelf”

25

on the shelf• “To err is human”

To Err Is HumanTo Err Is Human• Perception errors

26 Image Source: interaction-dynamics.com

To Err Is HumanTo Err Is HumanL k f Att ti• Lack of Attention

27 Image Source: aafp.org

To Err Is Human• Cognitive Errors - Example: Decoy Pricing

To Err Is Human• Cognitive Errors - Example: Decoy Pricing

# ofThe Economist Purchase Options

• Economist.com subscription $59 16

# of People

Economist.com subscription $59• Print subscription $125• Print & web subscription $125

084

The Economist Purchase Options# of

PeopleThe Economist Purchase Options

• Economist.com subscription $59• Print & web subscription $125

6832

People

28

(Ariely, 2008)p $ 32

What If This Happens in Healthcare?

It l d h• It already happens....(Mamede et al., 2010; Croskerry, 2003; Klein, 2005)

• What if health IT can help?

29

Adoption of Health IT: Assumptions

Adoption Use Outcomes

30

30

U.S.’s Efforts on Health IT Adoption

??

“ We will make wider use of electronic records...We will make wider use of electronic recordsand other health information technology, to help

control costs and reduce dangerouscontrol costs and reduce dangerous medical errors.”

President George W Bush

31 Source: Wikisource.org Image Source: Wikipedia.org

President George W. BushSixth State of the Union Address, January 31, 2006

Public Policy in Informatics: A US’s Case

1991: IOM’s CPR Report published1991: IOM s CPR Report published

1996: HIPAA enacted

2000-2001: IOM’s To Err Is Human & Crossing the Quality Chasm published

2004: George W. Bush’s Executive Order establishing ONCHIT (ONC)g ( )

2009-2010: ARRA/HITECH Act & “Meaningful use” regulations

32

Meaningful use regulations

U.S. Adoption of Health ITpAmbulatory (Hsiao et al, 2009) Hospitals (Jha et al, 2009)

Basic EHRs w/ notes 7.6%Comprehensive EHRs 1.5%pCPOE 17%

• U.S. lags behind other Western countries (Schoen et al, 2006;Jha et al, 2008)

• Money and misalignment of benefits is the biggest reason

33

gg

We Need “Change”We Need “Change”

“...we need to upgrade our medical records by switching from a paper to y g p pan electronic system of record keeping...”

P id t B k Ob

34

President Barack ObamaJune 15, 2009

The Birth of “Meaningful Use”

“...Our recovery plan will invest in y pelectronic health records and new technology

that will reduce errors, bring down costs, ensure privacy and save lives ”ensure privacy, and save lives.

President Barack ObamaAddress to Joint Session of Congress

35

Address to Joint Session of CongressFebruary 24, 2009

Source: WhiteHouse.gov

American Recovery & Reinvestment ActAmerican Recovery & Reinvestment Act

• Contains HITECH Act(Health Information Technology for Economic and Clinical Health Act)

• ~ 20 billion dollars for Health IT investments

• Incentives & penalties for providers

36

National LeadershipNational LeadershipOffice of the National Coordinator for Health InformationOffice of the National Coordinator for Health Information Technology (ONC -- formerly ONCHIT)

David Blumenthal, MD, MPPNational Coordinator for Health Information TechnologyHealth Information Technology (2009 - Feb 2011) [Just

37 Photo courtesy of U.S. Department of Health & Human Services

What is in the HITECH Act?

38 (Blumenthal, 2010)

“Meaningful Use”g

“M i f l U ”“Meaningful Use” of a PumpkinPumpkin

39 Image Source & Idea Courtesy of Pat Wise at HIMSS, Oct. 2009

“Meaningful Use” of Health ITg

Stage 1Stage 1- Electronic capture of health information- Information sharing

D t ti Stage 3

Better Health

- Data reporting

Stage 2

Stage 3

Use of EHRs to

Use of EHRs to improve processes of

EHRs to improve outcomes

processes of care

40 (Blumenthal, 2010)

H l h ITHealth IT ApplicationsApplications

41

Enterprise wide Hospital ITEnterprise-wide Hospital IT

• Master Patient Index (MPI)• Admit-Discharge-Transfer (ADT)• Electronic Health Records (EHRs)• Computerized Physician Order EntryComputerized Physician Order Entry

(CPOE)• Clinical Decision Support SystemsClinical Decision Support Systems

(CDSSs)• Picture Archiving and CommunicationPicture Archiving and Communication

System (PACS)• Nursing applications

42

Nursing applications• Enterprise Resource Planning (ERP)

Departmental ITDepartmental IT

• Pharmacy applications• Laboratory Information System (LIS)y y ( )• Specialized applications (ER, OR,

LR Anesthesia Critical CareLR, Anesthesia, Critical Care, Dietary Services, Blood Bank)

• Incident management & reporting system

43

EHRs & HISEHRs & HISThe Challenge - Knowing What It MeansThe Challenge Knowing What It Means

Electronic Health

El t i M di l

Records (EHRs)Hospital

Information S t (HIS)Electronic Medical

Records (EMRs)System (HIS)

Electronic Patient Records (EPRs)

Clinical

Computer-Based Patient Records

Personal Health Records (PHRs)

Information System (CIS)

44

(CPRs)

EHR SystemsEHR SystemsJ t l t i d t ti ?Just electronic documentation?

Diag-nosis

History & PE

Treat-ments ...

Or do they have other values?

nosis& PE ments

Or do they have other values?

45

Functions that Should Be Part of EHR Systems

• Computerized Medication Order Entry• Computerized Laboratory Order Entry• Computerized Laboratory Results• Physician Notes• Patient Demographics• Problem Lists• Medication ListsMedication Lists• Discharge Summaries• Diagnostic Test Results• Diagnostic Test Results• Radiologic Reports

46 (IOM, 2003; Blumenthal et al, 2006)

Computerized Physician Order Entry (CPOE)

47

Computerized Physician Order Entry (CPOE)

ValuesValues

• No handwriting!!!No handwriting!!!• Structured data entry: Completeness, clarity,

fewer mistakes (?)fewer mistakes (?)• No transcription errors!• Entry point for CDSSs• Streamlines workflow, increases efficiency, y

48

Clinical Decision Support Systems (CDSSs)Clinical Decision Support Systems (CDSSs)• The real place where most of the

l f h lth IT b hi dvalues of health IT can be achieved

• Expert systems• Based on artificial intelligenceBased on artificial intelligence,

machine learning, rules, or statisticsstatistics

• Examples: differential diagnoses treatment optionsdiagnoses, treatment options

49

(Shortliffe, 1976)

Clinical Decision Support Systems (CDSSs)Clinical Decision Support Systems (CDSSs)• Alerts & reminders

• Based on specified logical conditions• Examples:p

• Drug-allergy checks• Drug drug interaction checks• Drug-drug interaction checks• Drug-disease checks• Drug-lab checks• Drug-formulary checksg y• Reminders for preventive services or

certain actions (e g smoking cessation)

50

certain actions (e.g. smoking cessation)• Clinical practice guideline integration

Clinical Decision Support Systems (CDSSs)Clinical Decision Support Systems (CDSSs)

• Evidence-based knowledge sources e g drugEvidence based knowledge sources e.g. drug database, literature

• Simple UI designed to help clinical decision• Simple UI designed to help clinical decision making

51

A Basic Architecture of A CDSSA Basic Architecture of A CDSS

U U I t fUser User Interface

Inference Engine

Patient Data

Knowledge BaseOther Data

• Rules• Statistical data

• System states• Epidemiological/

52

• Statistical data• Literature• Etc.

• Epidemiological/surveillance data• Etc.

Clinical Decision Support Systems (CDSSs)

PATIENT

PerceptionCLINICIAN

Attention

External MemoryLong Term Memory WorkingMemory

Knowledge DataKnowledge DataMemory

Inference

53

DECISIONFrom a teaching slide by Don Connelly, 2006

Clinical Decision Support Systems (CDSSs)

PATIENT

PerceptionCLINICIAN

AttentionAbnormal lab

highlights

External MemoryLong Term Memory WorkingMemory

Knowledge DataKnowledge DataMemory

Inference

54

DECISION

Clinical Decision Support Systems (CDSSs)

PATIENT

PerceptionCLINICIAN

AttentionAbnormal lab

highlights

External MemoryLong Term Memory WorkingMemory

Knowledge DataKnowledge DataMemory

Inference

55

DECISION

Clinical Decision Support Systems (CDSSs)

PATIENT

PerceptionCLINICIAN

AttentionDrug-Allergy

Checks

External MemoryLong Term Memory WorkingMemory

Knowledge DataKnowledge DataMemory

Inference

56

DECISION

Clinical Decision Support Systems (CDSSs)

PATIENT

PerceptionCLINICIAN

Drug-Drug Interaction

ChecksAttention

Checks

External MemoryLong Term Memory WorkingMemory

Knowledge DataKnowledge DataMemory

Inference

57

DECISION

Clinical Decision Support Systems (CDSSs)

PATIENT

PerceptionCLINICIAN

Clinical Practice

Attention Guideline Reminders

External MemoryLong Term Memory WorkingMemory

Knowledge DataKnowledge DataMemory

Inference

58

DECISION

Clinical Decision Support Systems (CDSSs)

PATIENT

PerceptionCLINICIAN

Attention

External MemoryLong Term Memory WorkingMemory

Knowledge DataKnowledge DataMemory

Inference Diagnostic/Treatment Expert Systems

59

DECISION

Clinical Decision Support Systems (CDSSs)

• CDSS as a replacement or supplement of clinicians?• The demise of the “Greek Oracle” model (Miller & Masarie, 1990)

The “Greek Oracle” Model

The “Fundamental Theorem”

60 (Friedman, 2009)

Clinical Decision Support Systems (CDSSs)

Some risks• Alert fatigue

61

Workarounds

62

Health IT for Medication Safety

Ordering Transcription Dispensing Administrationg g

C OAutomatic Electronic

CPOEAutomatic Medication Dispensing

Electronic Medication

Administration Records (e-MAR)

BarcodedBarcodedMedication Di i

63

Medication Administration

Dispensing

Health Information Exchange (HIE)g ( )

Government

Hospital A Hospital B

Government

Clinic CL b P ti t t H

64

Lab Patient at Home

4 Quadrants of Hospital ITStrategic

p

HIEBusiness

Intelligence

CDSS

gPHRs

Social

ClinicalAdministrativeCPOE

EHRsVMI

Social Media

LIS

EHRsERP

VMI

ADT

MPIWord

Processor

65Operational

(Theera-Ampornpunt [unpublished], 2010-2011)

H l h I f iHealth Informatics As A FieldAs A Field

66

Biomedical/Health InformaticsBiomedical/Health Informatics• “[T]he field that is concerned with the optimal

use of information, often aided by the use of technology, to improve individual health, health care, public health, and biomedical research” (Hersh, 2009)

• “[T]he application of the science of informationas data plus meaning to problems of biomedical interest” (Bernstam et al, 2010)

67

DIKW Pyramid

Wisdom

Knowledge

InformationInformation

D tData

68

Task-Oriented View

Collection Processing UtilizationCollection Processing Utilization

StorageCommunication/Dissemination/

Presentation

69

M/B/H Informatics As A Field

70 (Shortliffe, 2002)

M/B/H Informatics and Other FieldsSocial

Sciences Statistics &

Cognitive & Decision

Sc e ces(Psychology,

Sociology, Linguistics,

Law & Ethics)

Statistics & Research Methods

Medical Sciences &Decision

ScienceSciences &

Public Health

Engineering Management

Biomedical/Computer & Library S iBiomedical/

Health Informatics

Computer & Information

ScienceScience,

Information Retrieval, KM

71

And More!

Balanced Focus of Informatics

People

Techno-logyProcess

72

IT MIT Management

73

ความเดิมตอนที่แล้ว...

H lth IT• Health IT: ของดี (อาจจะ) มปีระโยชน์(แต่ก็อาจมีโทษ)

• บริบท (local contexts) มคีวามสําคัญ• ต้องมีการบริหารจัดการที่เหมาะสมตองมการบรหารจดการทเหมาะสม

็ ิประเด็นพิจารณา

• อะไรคือบริบทที่เกีย่วขอ้ง?• จะจัดการมันอย่างไร?

74

ContextThe current

locationThe tailwind The headwind

location

The di i

The past j The destinationdirection

The speed

journey

The sailor(s) & The sail

75 The sailboat image source: Uwe Kils via http://en.wikipedia.org/wiki/Sailing

The boat( )

people on board

The sea

Direction & DestinationDirection & Destinationีรพ.มหาวิทยาลัย 900 เตียง รพ.เอกชน 200 เตียง

Vision เป็นโรงพยาบาลชั้นนําของ

ภมิภาคเอเชียที่มีความเปน็เลศิในVision เป็นโรงพยาบาล High Tech

High Touch ชั้นนําของประเทศภูมภาคเอเชยทมความเปนเลศใน

ด้านบริการ การศึกษา และวิจัยHigh Touch ชนนาของประเทศ

76

“The Sail”The Sail

77Carr (2004) Carr (2003)

4 Quadrants of Hospital ITStrategic

p

HIEBusiness

Intelligence

CDSS

gPHRs

Social

ClinicalAdministrativeCPOE

EHRsVMI

Social Media

LIS

EHRsERP

VMI

ADT

MPIWord

Processor

78Operational

(Theera-Ampornpunt [unpublished], 2010-2011)

IT As A Strategic Advantage

Sustainable

g g

I i it bl ?Yes

Yes competitiveadvantage

Rare ?

Inimitable ?

Yes

Yes

No

V l bl ?

Non-Substitutable?YesNo

Competitive

Preemptiveadvantage

Valuable ?

NoC titi

No Competitivenecessity

parity

Resources/capabilities

CompetitiveDisadvantage

79 From a teaching slide by Nelson F. Granados, 2006 at University of Minnesota Carlson School of Management

“The Sail”The Sailีรพ.มหาวิทยาลัย 900 เตียง

Vision เป็นโรงพยาบาลชั้นนําของ

รพ.เอกชน 200 เตียง

Vision เป็นโรงพยาบาล High Tech Vision เปนโรงพยาบาลชนนาของภูมิภาคเอเชียที่มีความเปน็เลศิในด้านบริการ การศึกษา และวิจัย

Vision เปนโรงพยาบาล High Tech

High Touch ชั้นนําของประเทศ

Current IT EnvironmentCurrent IT Environment

• เป็น รพ.แรกๆ ที่มี HIS ซึ่งพฒันาเอง แล ต่อยอดจาก MPI ADT ไปส่ CPOE

Current IT Environment• มี MPI, ADT, EHRs, CPOE แต่ยงัมี

CDSS จํากัดและตอยอดจาก MPI, ADT ไปสู CPOE(แต่ยงัขาด CDSS) ระบบ HIS เข้ากับ workflow ของ รพ. เป็นอย่างดี

CDSS จากด

• ยังไม่มี Customer Relationship

Management (CRM)

• ปัจจบุัน ระบบ HIS ยังใช้เทคโนโลยีเดียวกับช่วงที่พัฒนาใหม่ๆ (20 ปีก่อน) เป็นหลัก มีการนําเทคโนโลยีใหม่ๆ มา

80

เปนหลก มการนาเทคโนโลยใหมๆ มาใชอ้ย่างชา้ๆ

IT As A Strategic Advantage

Sustainable

g g

I i it bl ?Yes

Yes competitiveadvantage

Rare ?

Inimitable ?

Yes

Yes

No

V l bl ?

Non-Substitutable?YesNo

Competitive

Preemptiveadvantage

Valuable ?

NoC titi

No Competitivenecessity

parity

Resources/capabilities

CompetitiveDisadvantage

81 From a teaching slide by Nelson F. Granados, 2006 at University of Minnesota Carlson School of Management

“The Sailors”The Sailors

People

Techno-logyProcess

82

“The Sailors”The Sailorsีรพ.มหาวิทยาลัย 900 เตียง

• บคลากรมีอายเฉลี่ย 40 ปี

รพ.เอกชน 200 เตียง

• บคลากรมีอายเฉลี่ย 37 ปี บุคลากรมอายุเฉลย 40 ป (range 20-65)

• แผนก IT มีทั้งบุคลากรใหม่และทีเ่คย

บุคลากรมอายุเฉลย 37 ป

(range 20-57)

• แผนก IT เข้มแข็งพัฒนาระบบ HIS ตั้งแต่แรกเริ่ม

• แพทย์มีความเปน็ตัวของตัวเองสูง, ั ํ ้ ี

แผนก IT เขมแขง

• แพทย์ไม่ค่อยมี interaction กับ

บคลากรอื่น รายได้เป็นแรงดึงดดหลักมักทํางานเอกชนด้วย, ม ีturn-over rate สูงพยาบาลและวิชาชีพอื่นมักมองว่า

บุคลากรอน, รายไดเปนแรงดงดูดหลก

• ผู้บริหารได้รับการยอมรับจากบคุลากร

ทกวิชาชีพว่ามีวิสัยทัศน์และ• พยาบาลและวชาชพอนมกมองวาแพทย์คอือภิสิทธิ์ชน และมีเรื่องถกเถียงกันบ่อยๆ

ทกุวชาชพวามวสยทศนและ

บริหารงานได้ดี

83

ถกเถยงกนบอยๆ

ContextThe current

locationThe tailwind The headwind

location

The di i

The past j The destinationdirection

The speed

journey

The sailor(s) & The sail

84 The sailboat image source: Uwe Kils via http://en.wikipedia.org/wiki/Sailing

The boat( )

people on board

The sea

“The Boat”The Boat

• Size• ResourcesResources• Structures• Work Processes

Facilities/Geograph• Facilities/Geography• Etc.

85

“The Sea”T t t

The Sea• Target customers

• Local competitiveness• Relationship of hospital to local players• Inter-organizational collaborationg• IT market environment• National/international trend• National/international trend• Regulations• Standard of care• Etc.

86

SWOT Analysis“Th B t” “Th S ”

SWOT Analysis“The Boat” “The Sea”

Strengths Opportunities“The Tailwind” “The Tailwind”Strengths OpportunitiesThe Tailwind The Tailwind

Weaknesses Threats“The Headwind” “The Headwind”

87

IT vs BusinessIT vs Business

88

ContextThe current

locationThe tailwind The headwind

location

The di i

The past j The destinationdirection

The speed

journey

The sailor(s) & The sail

89 The sailboat image source: Uwe Kils via http://en.wikipedia.org/wiki/Sailing

The boat( )

people on board

The sea

Gartner’s Sourcing Life Cycle

Strategic Tactical

g y

Sourcing Strategyg Identificationg Criteria development

Evaluation and Selectiong Alignmentg Organization assessment

g

g Organization fitg Selection process g Partnership

g Core competenciesg Market scang Make-or-buy decisions

opportunities

ContractSourcingManagement

g Risk analysis

g Governance modelg Metrics

g Relationshipg Performance

assessment

DevelopmentManagement

g Payment modelsg Terms and conditionsg Provision

assessmentg Goals: reach business

objectives, efficiency,quality, innovation

90

for changesq y,

g Transition

From a teaching slide by Nelson F. Granados, 2006

IT Outsourcing Decision Tree

Is external delivery

Keep InternalNo

Does service offer titi d t ?

reliable and lower cost?

OUTSOURCE!

No

Yescompetitive advantage?

Keep InternalYes

91 From a teaching slide by Nelson F. Granados, 2006

IT Outsourcing Decision Tree: Ramathibodi’s Case

External delivery unreliable• Non-Core HIS

Ramathibodi s Case

Non-Core HIS,External delivery higher cost• ERP maintenance/ongoing customization

Is external delivery

Keep InternalNo

customization

Does service offer titi d t ?

reliable and lower cost?

OUTSOURCE!

No

Yescompetitive advantage?

Keep InternalYes

ERP initial implementation,

PACS RISCore HIS, CPOE

Strategic advantages• Agility due to local workflow accommodations

PACS, RIS, Departmental

systems, IT Training

92

Agility due to local workflow accommodations• Secondary data utilization (research, QI)• Roadmap to national leader in informatics

IT Training

Gartner Hype Cycle

93Image source: Jeremy Kemp via http://en.wikipedia.org/wiki/Hype_cycle

http://www.gartner.com/technology/research/methodologies/hype-cycle.jsp

Rogers’ Diffusion of Innovations: Adoption Curve

94Rogers (2003)

Unified Theory of Acceptance and Use of Technology (UTAUT)Technology (UTAUT)

Performance ExpectancyUsefulness p y

Effort Expectancy

B h i l

Ease of UseUse

BehaviorSocial Influence

Behavioral IntentionSocial Norm

& Opinions

Facilitating ConditionsIT Support

Gender Age Experience Voluntariness of Use

95 Venkatesh et al. (2003)

Adoption Strategies: “The Tipping Point” Version

Th Th R l f E id iThe Three Rules of Epidemics

• The Law of the Few

• Connectors

• Mavens

Change AgentsOpinion Leaders

Super-Users• Salesmen

• The Stickiness Factor Ease of Use

Champions

• The Power of Context Social Norm & Opinions

Gladwell (2000)

IT Support

96

Gladwell (2000)

Hospital IT Adoption Success Factors

• Communications of project plans & progressesW kfl id i• Workflow considerations

• Management support of IT projects• Common visions• Shared commitment• Multidisciplinary user involvement• Project managementProject management• Training

Innovativeness• Innovativeness• Organizational learning

97 Theera-Ampornpunt (2009) [Unpublished]

Resources on Change Management

98

Lorenzi & Riley (2004)

Leviss (Editor) (2010)

Summary• Healthcare is complex

H lth IT b fit h lth th h• Health IT can benefit healthcare through• Information delivery• Process improvement• Empowering providers & patients

• The world is moving toward health IT• Health informatics is related to & relies on the field of IT, but

th t ththey are not the same• Management of hospital IT is crucial to success

• Know your organization (“context”)• Strategic mindset

99

• Project & change management

Final Words...• Don’t forget our real aim...

Adoption Use OutcomesAdoption Use Outcomes

100

Q & AQ & A...D l d SlidDownload Slides

SlideShare.net/Nawanan

Contacts

@Nawanan @ThaiHealthIT

ranta@mahidol.ac.th

www.tc.umn.edu/~theer002

groups.google.com/group/ThaiHealthIT

101

References• Ariely D. Predictably irrational: the hidden forces that shape our decisions. New York City 

(NY):HarperCollins; 2008. 304 p.B EV S i h JW J h TR Wh i bi di l i f i ? J Bi d I f 2010• Bernstam EV, Smith JW, Johnson TR. What is biomedical informatics? J Biomed Inform. 2010 Feb;43(1):104‐10.

• Blumenthal D. Launching HITECH. N Engl J Med. 2010 Feb 4;362(5):382‐5.Bl th l D D R h C D l K F i T Jh A K h l R R S R b S• Blumenthal D, DesRoches C, Donelan K, Ferris T, Jha A, Kaushal R, Rao S, Rosenbaum S. Health information technology in the United States: the information base for progress [Internet]. Princeton (NJ): Robert Wood Johnson Foundation; 2006.

• Carr NG. Does IT matter? Information technology and the corrosion of competitiveCarr NG. Does IT matter? Information technology and the corrosion of competitive advantage. Boston (MA):Harvard Business Press;2004. 208 p.

• Carr NG. IT doesn’t matter. Harvard Bus Rev. 2003 May 1;81(5):41‐9.• Croskerry P. The importance of cognitive errors in diagnosis and strategies to minimize them. y p g g g

Acad Med. 2003 Aug;78(8):775‐80. 81 p. Available from: http://www.rwjf.org/files/publications/other/EHRReport0609.pdf

• Friedman CP. A "fundamental theorem" of biomedical informatics. J Am Med Inform Assoc. 2009 Apr;16(2):169‐70.

• Gladwell M. The Tipping Point: how little things can make a big difference. New York City (NY):Little Brown;2000. 304 p.

h i l d fi i f i d h l h i f i h l d

102

• Hersh W. A stimulus to define informatics and health information technology. BMC Med Inform Decis Mak. 2009;9:24.

• Hersh W. Health care information technology: progress and barriers. JAMA. 2004 Nov 10:292(18):2273‐4

References• Hsiao C, Beatty PC, Hing ES, Woodwell DA. Electronic medical record/electronic health record 

b ff b d h d d l [ ]use by office‐based physicians: United States, 2008 and preliminary 2009 [Internet]. 2009 [cited 2010 Apr 12]; Available from: http://www.cdc.gov/nchs/data/hestat/emr_ehr/emr_ehr.pdf

• Institute of Medicine Board on Health Care Services Committee on Data Standards for• Institute of Medicine, Board on Health Care Services, Committee on Data Standards for Patient Safety. Key Capabilities of an electronic health record system: letter report [Internet]. Washington, DC: National Academy of Sciences;2003. 31 p. Available from: http://www.nap.edu/catalog/10781.html

• Institute of Medicine, Committee on Quality of Health Care in America. To err is human: building a safer health system. Kohn LT, Corrigan JM, Donaldson MS, editors. Washington, DC: National Academy Press;2000. 287 p.

• Institute of Medicine, Committee on Quality of Health Care in America. Crossing the quality chasm: a new health system for the 21st century. Washington, DC: National Academy Press; 2001. 337 p.

• Jha AK DesRoches CM Campbell EG Donelan K Rao SR Ferris TG Shields A Rosenbaum S• Jha AK, DesRoches CM, Campbell EG, Donelan K, Rao SR, Ferris TG, Shields A, Rosenbaum S, Blumenthal D. Use of electronic health records in U.S. hospitals. N Engl J Med. 2009;360(16):1628‐38.

• Jha AK, Doolan D, Grandt D, Scott T, Bates DW. The use of health information technology in 

103

, , , , gyseven nations. Int J Med Inform. 2008;77(12):848‐54.

References• Klein JG. Five pitfalls in decisions about diagnosis and prescribing. BMJ. 2005 Apr 

2;330(7494):781‐3.• Leviss J (editor). H.I.T. or Miss: lessons learned from health information technology 

implementations. Chicago (IL):AHIMA Press;2010.• Lorenzi NM, Riley RT. Managing technological change: organizational aspects of health 

i f i N Y k Ci (NY) S i 2004informatics. New York City (NY): Springer;2004.• Mamede S, van Gog T, van den Berge K, Rikers RM, van Saase JL, van Guldener C, Schmidt 

HG. Effect of availability bias and reflective reasoning on diagnostic accuracy among internal medicine residents JAMA 2010 Sep 15:304(11):1198‐203medicine residents. JAMA. 2010 Sep 15:304(11):1198‐203.

• Miller RA, Masarie FE. The demise of the "Greek Oracle" model for medical diagnostic systems. Methods Inf Med. 1990 Jan;29(1):1‐2. 

• Rogers EM. Diffusion of innovations. 5th ed. New York City (NY): Free Press;2003. 551 p.Rogers EM. Diffusion of innovations. 5th ed. New York City (NY): Free Press;2003. 551 p.• Schoen C, Osborn R, Huynh PT, Doty M, Puegh J, Zapert K. On the front lines of care: primary 

care doctors’ office systems, experiences, and views in seven countries. Health Aff(Millwood). 2006;25(6):w555‐71.

• Shortliffe EH. JBI status report. Journal of Biomedical Informatics. 2002 Oct;35(5‐6):279‐80.• Venkatesh V, Morris MG, Davis GB, Davis FD. User acceptance of information technology: 

toward a unified view. MIS Quart. 2003 Sep;27(3):425‐78.

104

• Background designs are the property of Geetesh Bajaj. Used with permission. © Copyright, Geetesh Bajaj. All Rights Reserved.