HD STRAIN 3D strain metrology for electronic devices

Post on 19-Dec-2021

13 views 0 download

Transcript of HD STRAIN 3D strain metrology for electronic devices

HD STRAIN 3D strain metrology for electronic devices

Journées Nationales en Nanosciences et Nanotechnologies 2012

CEMES Toulouse

LETI Grenoble

Crolles Grenoble

Develop Dark-Field Electron Holography (HoloDark) for Strain Metrology in Devices •  Methodology: 2D → 3D measurements •  Instrumentation: brighter electron sources, in-situ experiments •  Characterisation: model → industrial specimens

A

Conventional holography

incident beam

incident beam

transmitted beam

holographic fringes

Si Si1-xGex

source drain

gate

MOSFET Transistor

Strained Si

Nitride layer

SiGe   SiGe  

-3% 3% εxx 200  nm  

s-Si Si1-xGex

Dark-Field Electron Holography

M J Hÿtch, F Houdellier, F Hüe, E Snoeck, Nature 453, 1086 (2008)

Strained Silicon

•  Strained silicon channel •  Strain engineering methods include embedded sources and strain layers; technology which is industrial standard •  Straining silicon increases carrier mobility (electrons or holes)

Strain Mapping

need for measurement

reliable and robust technique for strain measurements

Contact: Martin Hÿtch hytch@cemes.fr

Tomography

International Patent Application: PCT N° PCT/FR2008/001302 (CNRS)

F Hüe, M J Hÿtch, F Houdellier, H Bender, A Claverie, APL 95, 073103 (2009)

Finite  Element  Model  •  New technique interferes diffracted beams from unstrained (A) and strained (B) regions •  Advantages include: µm-field of view, high spatial resolution and high precision

M J Hÿtch et al. Physica Status Solidi A 208, 580 (2011) HoloDark 1.0 software (HREM Research Inc.) by M J Hÿtch, C Gatel, K Ishizuka

HD HB α=40°

0 50 100 150 200-2

0

2

4

6

8

10

12

14

16

Y

X ( nm )

ampl phase

0 20 40 60 80 100 120 140 160 180 200

0

2

4

6

8

10

12

14

16

ampli

tude

X ( nm )

Exp Simu

Experiment α=34°

M J Hÿtch, F Houdellier, F Hüe, E Snoeck, Ultramicroscopy 111 1328-1337 (2011)

Holographic fringes

Incident beam

Diffracted beam B

Areference

Diffracted beam A

Bstrained

Biprism

CG φφ +Cφ

α=2° α=15° α=40.5°

Dark field hologram Phase image Amplitude image

In situ TEM measurements and finite element modelling  

Al  

Si  

SiO2  Diamond  tip  Bulk  Si  

Indentation  mark  in  the  silica  

 

Ø Slip-traces + stereographic projection map -> slip plane (111) Ø Cross-slip event -> Burgers vector b=[01-1] Ø Resolved shear stress Ø Applied force T=[103] -> Schmid factor Ø Shear stress

τ = µ b / R = 200 MPa

Brighter electron source

F Houdellier and M Monthioux, French Patent Application, FR 10 03696, 2010 (CNRS)

F Houdellier, A Masseboeuf, M Monthioux, M J Hÿtch, Carbon 50 (2012) Development of a New Cold Field-Emission Gun for Electron Holography.

Carbon tip W[310] tip

W[310] tip

Carbon tip

Emission current = 8 µA Exposure = 1 s

C2 aperture = 50 µm

 

CCnT  

CCnT  

ref.  

meas.  biprism  

d +γ→ work function φ

I = A1.5×10−6

φEloc2 exp 10.4

φ

#

$%%

&

'((exp −

6.44×109φ1.5dγV

#

$%

&

'(

Eloc = γE0 = −γVd

γ = 21.5φ = 4.8± 0.3 eVd = 680 nm

Au  anode  

Etched  W  wire  

Carbon  cone  nanotip  

V  

i  

10  μm  

d  

L de Knoop, S Reboh, M Legros

 

E Javon, C Gatel, A Lubk, M J Hÿtch

L de Knoop, F Houdellier, C Gatel, A Masseboeuf, M

Monthioux, M J Hÿtch

Anode  80  V  

CCnT  

Phase ϕ =CE V dlbeampath∫

γ =Eloc

E0=2.580.12

= 21.5

Fowler-­‐Nordheim  equaCon:  

   

Anode  80  V  

Cross  slip  event  

Al  

Si  

SiO2  

Bulk  Si  

0  GPa  

2  GPa  

S = cos T,b( ) ⋅cos T, (111)( ) = 0.48σ = τ / S = 400 MPa

Slip  trace  

R

Ø External stress with 150 µN applied force -> 2-300 MPa in Al layer

 

Simulation

0 20 40 60 80 100 120 140 160 180 200 220-6

-4

-2

0

2

4

6

8

10

12

14

Am

plitu

de

X ( nm )

HB HD

a)  TEM  micrograph  b)  Experimental  strain  map  c)  FEM  of  strain  

a)  

b)  

c)  

01/01/2009 -> 30/09/2013

Anode  80  V